Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Nonlocal equations in time.

Bücher zum Thema „Nonlocal equations in time“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Bücher für die Forschung zum Thema "Nonlocal equations in time" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Bücher für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

E, Zorumski William, und Langley Research Center, Hrsg. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

E, Zorumski William, und Langley Research Center, Hrsg. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

E, Zorumski William, und Langley Research Center, Hrsg. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Andreu-Vaillo, Fuensanta. Nonlocal diffusion problems. Providence, R.I: American Mathematical Society, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Shishmarev, I. A. (Ilʹi͡a︡ Andreevich)., Hrsg. Nonlinear nonlocal equations in the theory of waves. Providence, R.I: American Mathematical Society, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Naumkin, P. I. Nonlinear nonlocal equations in the theory of waves. Providence, R.I: American Mathematical Society, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Roquejoffre, Jean-Michel. The Dynamics of Front Propagation in Nonlocal Reaction–Diffusion Equations. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-77772-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

1958-, Biler Piotr, Karch Grzegorz und Nadzieja Tadeusz 1951-, Hrsg. Nonlocal elliptic and parabolic problems: Proceedings of the conference held at Będlewo , September 12-15, 2003. Warszawa: Institute of Mathematics, Polish Academy of Sciences, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kamenskiĭ, G. A. Extrema of nonlocal functionals and boundary value problems for functional differential equations. Hauppauge, N.Y: Nova Science Publishers, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kubica, Adam, Katarzyna Ryszewska und Masahiro Yamamoto. Time-Fractional Differential Equations. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9066-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

E, Zorumski W., Watson Willie R und Langley Research Center, Hrsg. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

E, Zorumski W., Watson Willie R und Langley Research Center, Hrsg. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Georgiev, Svetlin G. Integral Equations on Time Scales. Paris: Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-228-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Bohner, Martin, und Allan Peterson. Dynamic Equations on Time Scales. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0201-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Wang, Gengsheng, Lijuan Wang, Yashan Xu und Yubiao Zhang. Time Optimal Control of Evolution Equations. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95363-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Georgiev, Svetlin G. Functional Dynamic Equations on Time Scales. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15420-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

1953-, Rao S. M., Hrsg. Time domain electromagnetics. San Diego: Academic Press, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Pötter, Ulrich. Models for interdependent decisions over time. Colchester: European Science Foundation, Scientific Network on Household Panel Studies, University of Essex, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Center, Langley Research, und Institute for Computer Applications in Science and Engineering., Hrsg. Spectral methods in time for parabolic problems. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Bertil, Gustafsson. Time dependent problems and difference methods. New York: Wiley, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Farina, Alberto, und Jean-Claude Saut, Hrsg. Stationary and Time Dependent Gross-Pitaevskii Equations. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/conm/473.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Bohner, Martin, und Allan Peterson, Hrsg. Advances in Dynamic Equations on Time Scales. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-0-8176-8230-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Andersson, Ulf. Time-domain methods for the Maxwell equations. Stockholm: Tekniska ho gsk., 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

1966-, Bohner Martin, und Peterson Allan C, Hrsg. Advances in dynamic equations on time scales. Boston: Birkhäuser, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

name, No. Advances in dynamic equations on time scales. Boston, MA: Birkhuser, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Pyke, Randall Mitchell. Time periodic solutions of nonlinear wave equations. Toronto: [s.n.], 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Agarwal, Ravi P., Bipan Hazarika und Sanket Tikare. Dynamic Equations on Time Scales and Applications. Boca Raton: Chapman and Hall/CRC, 2024. http://dx.doi.org/10.1201/9781003467908.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Gustafsson, Bertil. Time dependent problems and difference methods. New York: Wiley, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Martynyuk, Anatoly A. Stability Theory for Dynamic Equations on Time Scales. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42213-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Gal, Ciprian G., und Mahamadi Warma. Fractional-in-Time Semilinear Parabolic Equations and Applications. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45043-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Kirsch, Andreas, und Frank Hettlich. The Mathematical Theory of Time-Harmonic Maxwell's Equations. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11086-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Sayas, Francisco-Javier. Retarded Potentials and Time Domain Boundary Integral Equations. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26645-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

S, Liou M., Povinelli Louis A und United States. National Aeronautics and Space Administration., Hrsg. Multigrid time-accurate integration of Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

E, Turkel, und United States. National Aeronautics and Space Administration, Hrsg. Pseudo-time algorithms for the Navier-Stokes equations. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

E, Turkel, und United States. National Aeronautics and Space Administration, Hrsg. Pseudo-time algorithms for the Navier-Stokes equations. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

S, Liou M., Povinelli Louis A und United States. National Aeronautics and Space Administration., Hrsg. Multigrid time-accurate integration of Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

S, Liou M., Povinelli Louis A und United States. National Aeronautics and Space Administration., Hrsg. Multigrid time-accurate integration of Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Swanson, R. Charles. Pseudo-time algorithms for the Navier-Stokes equations. Hampton, Va: ICASE, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Morawetz, Klaus. Nonlocal Collision Integral. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0013.

Der volle Inhalt der Quelle
Annotation:
The kinetic equation with the nonlocal shifts is presented as the final result on the way to derive the kinetic equation with nonlocal corrections. The exclusive dependence of the nonlocal and non-instant corrections on the scattering phase shift confirms the results from the theory of gases. With the approximation on the level of the Brueckner reaction matrix, the corresponding non-instant and nonlocal scattering integral in parallel with the classical Enskog’s equation, can be treated with Monte-Carlo simulation techniques. Neglecting the shifts, the Landau theory of quasiparticle transport appears. In this sense the presented kinetic theory unifies both approaches. An intrinsic symmetry is found from the optical theorem which allows for representing the collision integral equivalently either in particle-hole symmetric or space-time symmetric form.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Morawetz, Klaus. Nonequilibrium Quantum Hydrodynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0015.

Der volle Inhalt der Quelle
Annotation:
The balance equations resulting from the nonlocal kinetic equation are derived. They show besides the Landau-like quasiparticle contributions explicit two-particle correlated parts which can be interpreted as molecular contributions. It looks like as if two particles form a short-living molecule. All observables like density, momentum and energy are found as a conserving system of balance equations where the correlated parts are in agreement with the forms obtained when calculating the reduced density matrix with the extended quasiparticle functional. Therefore the nonlocal kinetic equation for the quasiparticle distribution forms a consistent theory. The entropy is shown to consist also of a quasiparticle part and a correlated part. The explicit entropy gain is proved to complete the H-theorem even for nonlocal collision events. The limit of Landau theory is explored when neglecting the delay time. The rearrangement energy is found to mediate between the spectral quasiparticle energy and the Landau variational quasiparticle energy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Morawetz, Klaus. Properties of Non-Instant and Nonlocal Corrections. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0014.

Der volle Inhalt der Quelle
Annotation:
The derived nonlocal and non-instant shifts are discussed with respect to various symmetries and gauges. The classical counterparts are derived and found in agreement with the expected phenomenological ones from chapter 3. The explicit forms of the hard-sphere like offsets and the delay time in terms of the scattering phase shifts are calculated and discussed on the example of nuclear collision. The numerical results reveal an interesting inside into the microscopic correlations developed in dependence on the scattering angle and scattering energy. The just-accomplished derivation of the nonlocal scattering integrals is far from being intuitive. We have reached our task, the kinetic equation, being guided by nothing but systematic implementation of the quasiclassical approximation and the limit of small scattering rates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Morawetz, Klaus. Simulations of Heavy-Ion Reactions with Nonlocal Collisions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0023.

Der volle Inhalt der Quelle
Annotation:
The scenario of heavy-ion reactions around the Fermi energy is explored. The quantum BUU equation is solved numerically with and without nonlocal corrections and the effect of nonlocal corrections on experimental values is calculated. A practical recipe is presented which allows reproducing the correct asymptotes of scattering by acting on the point of closest approach. The better description of dynamical correlations by the nonlocal kinetic equation is demonstrated by an enhancement of the high-energy part of the particle spectra and the enhancement of mid-rapidity charge distributions. The time-resolved solution shows the enhancement of neck formation. It is shown that the dissipated energy increases due to the nonlocal collision scenario which is responsible for the observed effects and not due to the enhancement of collisions. As final result, a method is presented how to incorporate the effective mass and quasiparticle renormalisation with the help of the nonlocal simulation scenario.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Horing, Norman J. Morgenstern. Interacting Electron–Hole–Phonon System. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0011.

Der volle Inhalt der Quelle
Annotation:
Chapter 11 employs variational differential techniques and the Schwinger Action Principle to derive coupled-field Green’s function equations for a multi-component system, modeled as an interacting electron-hole-phonon system. The coupled Fermion Green’s function equations involve five interactions (electron-electron, hole-hole, electron-hole, electron-phonon, and hole-phonon). Starting with quantum Hamilton equations of motion for the various electron/hole creation/annihilation operators and their nonequilibrium average/expectation values, variational differentiation with respect to particle sources leads to a chain of coupled Green’s function equations involving differing species of Green’s functions. For example, the 1-electron Green’s function equation is coupled to the 2-electron Green’s function (as earlier), also to the 1-electron/1-hole Green’s function, and to the Green’s function for 1-electron propagation influenced by a nontrivial phonon field. Similar remarks apply to the 1-hole Green’s function equation, and all others. Higher order Green’s function equations are derived by further variational differentiation with respect to sources, yielding additional couplings. Chapter 11 also introduces the 1-phonon Green’s function, emphasizing the role of electron coupling in phonon propagation, leading to dynamic, nonlocal electron screening of the phonon spectrum and hybridization of the ion and electron plasmons, a Bohm-Staver phonon mode, and the Kohn anomaly. Furthermore, the single-electron Green’s function with only phonon coupling can be rewritten, as usual, coupled to the 2-electron Green’s function with an effective time-dependent electron-electron interaction potential mediated by the 1-phonon Green’s function, leading to the polaron as an electron propagating jointly with its induced lattice polarization. An alternative formulation of the coupled Green’s function equations for the electron-hole-phonon model is applied in the development of a generalized shielded potential approximation, analysing its inverse dielectric screening response function and associated hybridized collective modes. A brief discussion of the (theoretical) origin of the exciton-plasmon interaction follows.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Nonlocal diffusion problems. Providence, R.I: American Mathematical Society, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Nonlocal and abstract parabolic equations and their applications. Warszawa: Institute of Mathematics, Polish Academy of Sciences, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Delay Differential Evolutions Subjected to Nonlocal Initial Conditions. Taylor & Francis Group, 2018.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Necula, Mihai, Ioan I. Vrabie, Monica-Dana Burlică und Daniela Roșu. Delay Differential Evolutions Subjected to Nonlocal Initial Conditions. Taylor & Francis Group, 2018.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Necula, Mihai, Ioan I. Vrabie, Monica-Dana Burlică und Daniela Roșu. Delay Differential Evolutions Subjected to Nonlocal Initial Conditions. Taylor & Francis Group, 2018.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Necula, Mihai, Ioan I. Vrabie, Monica-Dana Burlică und Daniela Roșu. Delay Differential Evolutions Subjected to Nonlocal Initial Conditions. Taylor & Francis Group, 2016.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie
Wir verwenden Cookies, um die Funktionalität unserer Website zu verbessern. Mehr darüber