Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Nonlocal equations in time“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Nonlocal equations in time" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Nonlocal equations in time"
Dong, Hongjie, Chulan Zeng und Qi S. Zhang. „Time Analyticity for Nonlocal Parabolic Equations“. SIAM Journal on Mathematical Analysis 55, Nr. 3 (07.06.2023): 1883–915. http://dx.doi.org/10.1137/22m1490740.
Der volle Inhalt der QuelleDing, Xiao-Li, und Juan J. Nieto. „Analytical solutions for multi-term time-space fractional partial differential equations with nonlocal damping terms“. Fractional Calculus and Applied Analysis 21, Nr. 2 (25.04.2018): 312–35. http://dx.doi.org/10.1515/fca-2018-0019.
Der volle Inhalt der QuelleAblowitz, Mark J., und Ziad H. Musslimani. „Integrable space-time shifted nonlocal nonlinear equations“. Physics Letters A 409 (September 2021): 127516. http://dx.doi.org/10.1016/j.physleta.2021.127516.
Der volle Inhalt der QuelleMorawetz, Klaus, Pavel Lipavský und Václav Špička. „Retarded versus Time-Nonlocal Quantum Kinetic Equations“. Annals of Physics 294, Nr. 2 (Dezember 2001): 135–64. http://dx.doi.org/10.1006/aphy.2001.6197.
Der volle Inhalt der QuelleLv, Cong, Deqin Qiu und Q. P. Liu. „Riemann–Hilbert approach to two-component modified short-pulse system and its nonlocal reductions“. Chaos: An Interdisciplinary Journal of Nonlinear Science 32, Nr. 9 (September 2022): 093120. http://dx.doi.org/10.1063/5.0088293.
Der volle Inhalt der QuelleCichoń, Mieczysław, Bianca Satco und Aneta Sikorska-Nowak. „Impulsive nonlocal differential equations through differential equations on time scales“. Applied Mathematics and Computation 218, Nr. 6 (November 2011): 2449–58. http://dx.doi.org/10.1016/j.amc.2011.07.057.
Der volle Inhalt der QuelleLudu, Andrei. „Nonlocal Symmetries for Time-Dependent Order Differential Equations“. Symmetry 10, Nr. 12 (19.12.2018): 771. http://dx.doi.org/10.3390/sym10120771.
Der volle Inhalt der QuelleFeng, Wei, und Song-Lin Zhao. „Soliton solutions to the nonlocal non-isospectral nonlinear Schrödinger equation“. International Journal of Modern Physics B 34, Nr. 25 (09.09.2020): 2050219. http://dx.doi.org/10.1142/s0217979220502197.
Der volle Inhalt der QuelleAshurov, Ravshan, und Yusuf Fayziev. „On the Nonlocal Problems in Time for Time-Fractional Subdiffusion Equations“. Fractal and Fractional 6, Nr. 1 (12.01.2022): 41. http://dx.doi.org/10.3390/fractalfract6010041.
Der volle Inhalt der QuelleMa, Wen-Xiu. „Integrable nonlocal nonlinear Schrödinger equations associated with 𝑠𝑜(3,ℝ)“. Proceedings of the American Mathematical Society, Series B 9, Nr. 1 (14.01.2022): 1–11. http://dx.doi.org/10.1090/bproc/116.
Der volle Inhalt der QuelleDissertationen zum Thema "Nonlocal equations in time"
Hariz, Belgacem Khader. „Higher-order Embedding Formalism, Noether’s Theorem on Time Scales and Eringen’s Nonlocal Elastica“. Electronic Thesis or Diss., Pau, 2022. https://theses.hal.science/tel-03981833.
Der volle Inhalt der QuelleThe aim of this thesis is to deal with the connection between continuous and discrete versions of a given object. This connection can be studied in two different directions: one going from a continuous setting to a discrete analogue, and in a symmetric way, from a discrete setting to a continuous one. The first procedure is typically used in numerical analysis in order to construct numerical integrators and the second one is typical of continuous modeling for the study of micro-structured materials.In this manuscript, we focus our attention on three distinct problems. In the first part, we propose a general framework precising different ways to derive a discrete version of a differential equation called discrete embedding formalism.More precisely, we exhibit three main discrete associate: the differential, integral or variational structure in both classical and high-order approximations.The second part focuses on the preservation of symmetries for discrete versions of Lagrangian and Hamiltonian systems, i.e., the discrete analogue of Noether's theorem.Finally, the third part applies these results in mechanics, i.e., the problem studied by N. Challamel, Kocsis and Wang called Eringen's nonlocal elastica equation which can beobtained by the continualization method. Precisely, we construct a discrete version of Eringen's nonlocal elastica then we study the difference with Challamel's proposal
Figueroa, Iglesias Susely. „Integro-differential models for evolutionary dynamics of populations in time-heterogeneous environments“. Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30098.
Der volle Inhalt der QuelleThis thesis focuses on the qualitative study of several parabolic equations of the Lotka-Volterra type from evolutionary biology and ecology taking into account a time-periodic growth rate and a non-local competition term. In the initial part we first study the dynamics of phenotypically structured populations under the effect of mutations and selection in environments that vary periodically in time and then the impact of a climate change on such population considering environmental conditions which vary according to a linear trend, but in an oscillatory manner. In both problems we first study the long-time behaviour of the solutions. Then we use an approach based on Hamilton-Jacobi equations to study these long-time solutions asymptotically when the effect of mutations is small. We prove that when the effect of mutations vanishes, the phenotypic density of the population is concentrated on a single trait (which varies linearly over time in the second model), while the population size oscillates periodically. For the climate change model we also provide an asymptotic expansion of the mean population size and of the critical speed leading to the extinction of the population, which is closely related to the derivation of an asymptotic expansion of the Floquet eigenvalue in terms of the diffusion rate. In the second part we study some particular examples of growth rates by providing explicit and semi-explicit solutions to the problem and present some numerical illustrations for the periodic model. In addition, being motivated by a biological experiment, we compare two populations evolved in different environments (constant or periodic). In addition, we present a numerical comparison between stochastic and deterministic models modelling the horizontal gene transfer phenomenon. In a Hamilton-Jacobi context, we are able to numerically reproduce the evolutionary rescue of a small population that we observe in the stochastic model
Belin, Théo. „On the free boundary of a forward-backward parabolic equation“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM040.
Der volle Inhalt der QuelleIn this thesis, we focus on a forward-backward parabolic problem and the free boundary arising from it. The equation models a phase change driven by a Stefan problem coupled with a time nonlocal hysteresis operator. Our study deals with some theoretical and numerical aspects raised by this type of time nonlocal equation, in particular regarding the free boundary.First, we establish an equivalence between entropy inequalities associated with the problem and a weak formulation of the hysteresis operator. This discovery motivates the construction of a finite-volume numerical scheme whose convergence to a solution is shown. The compactness of the sequence of approximate solutions is based on Hilpert's inequality. Numerical experiments in dimensions 1 and 2 support these results and illustrate the behaviour of the free boundary.Next we establish a general framework of viscosity solutions for front propagation problems which are nonlocl in space and time. They may include a coupling with a bulk evolution equation. A strict comparison theorem and an existence theorem derived from Perron's method are proved. The Stefan problem and some variations of it fall within this general framework.Finally, motivated by the study of parabolic equations in time-varying domains appearing in couplings of front propagation problems, we prove new results of maximal regularity in Lebesgue spaces. Of particular interest is the precise estimation of the regularity constant for nonautonomous and relatively continuous operators. These results lead to new growth conditions guaranteeing the existence of strong global solutions to abstract quasi-linear problems on a bounded time interval
Freitas, Pedro S. C. de. „Some problems in nonlocal reaction-diffusion equations“. Thesis, Heriot-Watt University, 1994. http://hdl.handle.net/10399/1401.
Der volle Inhalt der QuelleBegg, Ronald Evan. „Cell-population growth modelling and nonlocal differential equations“. Thesis, University of Canterbury. Mathematics and Statistics, 2007. http://hdl.handle.net/10092/1165.
Der volle Inhalt der QuelleWang, Ying. „Contributions to local and nonlocal elliptic differential equations“. Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/134657.
Der volle Inhalt der QuelleEsta tesis doctoral está dividida en cuatro partes. La primera parte está dedicada al estudio de la simetría radial y las propiedades de monotonicidad de soluciones positivas de ecuaciones elípticas fraccionarias en la bola unitaria o en todo el espacio, usando el método de planos móviles. En la segunda parte, se consideran propiedades de decaimiento y simetría de las soluciones positivas para ecuaciones integro-diferenciales en todo el espacio. Estudiamos el decaimiento, construyendo super y subsoluciones apropiadas y usamos el método de los planos móviles para probar las propiedades de simetría. La tercera parte es investigar la existencia y unicidad de soluciones débiles de la ecuación del calor fraccionaria, involucrando medidas de Radon. Más aún, analizamos el comportamiento asintótico de la solución débil cuando la medida de Radon es la masa de Dirac. En la cuarta parte, estudiamos la existencia de soluciones a problemas elípticos no lineales que provienen del modelamiento de dispositivos de sistemas micro-electromecánicos en el caso en que la membrana elástica entra en contacto con la placa inferior en la frontera. Mostramos, en este caso, como el decaimiento de la membrana afecta la existencia de soluciones y la tensión pull-in.
Felsinger, Matthieu [Verfasser]. „Parabolic equations associated with symmetric nonlocal operators / Matthieu Felsinger“. Bielefeld : Universitätsbibliothek Bielefeld, 2013. http://d-nb.info/1042557322/34.
Der volle Inhalt der QuelleWu, Lijiang. „Nonlocal Interaction Equations in Heterogeneous and Non-Convex Environments“. Research Showcase @ CMU, 2015. http://repository.cmu.edu/dissertations/474.
Der volle Inhalt der QuelleHollender, Julian. „Lévy-Type Processes under Uncertainty and Related Nonlocal Equations“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-211795.
Der volle Inhalt der QuelleTopp, Paredes Erwin. „Some results for nonlocal elliptic and parabolic nonlinear equations“. Tesis, Universidad de Chile, 2014. http://www.repositorio.uchile.cl/handle/2250/129978.
Der volle Inhalt der Quelle\quad Esta tesis est\'a dedicada al estudio de propiedades cualitativas de ecuaciones el\'ipticas degeneradas donde la difusi\'on es puramente no local, y se lleva a cabo en el contexto de la teor\'ia de soluciones viscosas. La primera parte de la tesis trata el estudio de propiedades de compacidad de una familia de \textsl{operadores no locales de orden cero}, es decir, operadores el\'ipticos no locales definidos a trav\'es de una medida finita. Consideramos un familia uni-param\'etrica de operadores de orden cero de la forma \begin \mathcal_\epsilon(u, x) = \int_ [u(x + z) - u(x)]K_\epsilon(z)dz, \end donde, para cada $\epsilon \in (0,1)$, $K_\epsilon \in L^1(\mathbb^N)$ es una funci\'on radialmente sim\'etrica y positiva. Configuramos nuestro problema de manera que $\mathcal_\epsilon$ aproxime el Laplaciano fraccionario cuando $\epsilon \to 0^+$, lo que implica que la norma $L^1$ de $K_\epsilon$ es no acotada a medida que $\epsilon \to 0^+$. Como primer resultado de esta parte obtenemos un m\'odulo de continuidad en espacio-tiempo para la familia de soluciones acotadas de la ecuaci\'on del calor no local en el plano asociada a $\mathcal_\epsilon$ que es independiente de $\epsilon \in (0,1)$. El segundo resultado de esta parte considera un problema de Dirichlet en un dominio acotado $\Omega \subset \mathbb^N$ asociado a $\mathcal_\epsilon$, y concluimos la compacidad de la familia de soluciones acotadas $\_\epsilon$ para estos problemas de Dirichlet encontrando un m\'odulo de continuidad com\'un en $\bar$ para $\_\epsilon$, que es independiente de $\epsilon$. \medskip La segunda parte de la tesis est\'a relacionada con la existencia y unicidad, regularidad y comportamiento a grandes tiempos para ecuaciones no locales con t\'erminos de gradiente dominantes. Comenzamos con la existencia y unicidad de una ecuaci\'on de Hamilton-Jacobi de la forma \begin{equation*} \begin{array}{rll} \lambda u - \mathcal{I}(u) + H(x, Du) & = 0 \quad & \mbox{en} \ \Omega \\ u & = \varphi \quad & \mbox{en} \ \Omega^c, \end{array} \end{equation*} donde el Hamiltoniano $H$ tiene una \textsl{forma de Bellman}. Estructuramos el problema de manera que el operador no local $\mathcal{I}$ es de orden menor que $1$ y por lo tanto puede aparecer una p\'erdida de la condici\'on de borde. En la segunda secci\'on de esta parte, consideramos $H$ coercivo con un crecimiento en el gradiente m\'as fuerte que el orden de la difusi\'on del operador no local. El resultado principal en este caso es la continuidad H\"older para \textsl{subsoluciones} para este problema. Estabilidad de las estimaciones de regularidad cuando $\lambda \to 0$ permiten concluir el comportamiento asint\'otico erg\'odico cuando $t \to \infty$ para el problema parab\'olico asociado en el toro. En esta tarea, principios del m\'aximo fuertes son de importancia mayor en el an\'alisis asint\'otico. Finalmente, adaptamos los resultados obtenidos en las primeras dos secciones de esta parte de la tesis para obtener el comportamiento a grandes tiempos para el problema de Cauchy-Dirichlet asociado a $H$ en las formas Bellman y coercivo. En este caso, la influencia del dato exterior en la ecuaci\'on a trav\'es del t\'ermino no local hace que el problema parab\'olico aproxime al correspondiente problema estacionario cuando $t \to \infty$.
Bücher zum Thema "Nonlocal equations in time"
E, Zorumski William, und Langley Research Center, Hrsg. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Den vollen Inhalt der Quelle findenE, Zorumski William, und Langley Research Center, Hrsg. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Den vollen Inhalt der Quelle findenE, Zorumski William, und Langley Research Center, Hrsg. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Den vollen Inhalt der Quelle findenAndreu-Vaillo, Fuensanta. Nonlocal diffusion problems. Providence, R.I: American Mathematical Society, 2010.
Den vollen Inhalt der Quelle findenShishmarev, I. A. (Ilʹi͡a︡ Andreevich)., Hrsg. Nonlinear nonlocal equations in the theory of waves. Providence, R.I: American Mathematical Society, 1994.
Den vollen Inhalt der Quelle findenNaumkin, P. I. Nonlinear nonlocal equations in the theory of waves. Providence, R.I: American Mathematical Society, 1994.
Den vollen Inhalt der Quelle findenRoquejoffre, Jean-Michel. The Dynamics of Front Propagation in Nonlocal Reaction–Diffusion Equations. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-77772-1.
Der volle Inhalt der Quelle1958-, Biler Piotr, Karch Grzegorz und Nadzieja Tadeusz 1951-, Hrsg. Nonlocal elliptic and parabolic problems: Proceedings of the conference held at Będlewo , September 12-15, 2003. Warszawa: Institute of Mathematics, Polish Academy of Sciences, 2004.
Den vollen Inhalt der Quelle findenKamenskiĭ, G. A. Extrema of nonlocal functionals and boundary value problems for functional differential equations. Hauppauge, N.Y: Nova Science Publishers, 2007.
Den vollen Inhalt der Quelle findenKubica, Adam, Katarzyna Ryszewska und Masahiro Yamamoto. Time-Fractional Differential Equations. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9066-5.
Der volle Inhalt der QuelleBuchteile zum Thema "Nonlocal equations in time"
Ablowitz, Mark J., und Ziad H. Musslimani. „Integrable Nonlocal PT Symmetric and Reverse Space-Time Nonlinear Schrödinger Equations“. In Springer Tracts in Modern Physics, 493–512. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1247-2_17.
Der volle Inhalt der QuelleMonvel, Anne Boutet de, Yan Rybalko und Dmitry Shepelsky. „Focusing Nonlocal Nonlinear Schrödinger Equation with Asymmetric Boundary Conditions: Large-Time Behavior“. In Toeplitz Operators and Random Matrices, 193–227. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13851-5_11.
Der volle Inhalt der QuelleChen, Jingkai. „Nonlocal Beam Equations“. In Nonlocal Euler–Bernoulli Beam Theories, 5–7. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69788-4_2.
Der volle Inhalt der QuelleGeorgiev, Slavi G., und Lubin G. Vulkov. „Recovering the Time-Dependent Volatility and Interest Rate in European Options from Nonlocal Price Measurements by Adjoint Equation Optimization“. In Advanced Computing in Industrial Mathematics, 45–55. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20951-2_5.
Der volle Inhalt der QuelleHeimsoeth, B., und H. Lange. „Nonlocal Nonlinear Schrödinger Equations“. In Semigroup Theory and Evolution Equations, 243–57. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003419914-17.
Der volle Inhalt der QuelleVolpert, Vitaly. „Nonlocal Reaction-diffusion Equations“. In Elliptic Partial Differential Equations, 521–626. Basel: Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0813-2_9.
Der volle Inhalt der QuelleMeher, Ramakanta. „Nonlocal Existence Theorem“. In Textbook on Ordinary Differential Equations, 47–80. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003360643-4.
Der volle Inhalt der QuelleKrasil’ shchik, I. S., und P. H. M. Kersten. „Nonlocal theory“. In Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations, 99–153. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-3196-6_3.
Der volle Inhalt der QuelleFoss, Mikil D., Petronela Radu und Laura White. „Doubly Nonlocal Cahn–Hilliard Equations“. In Association for Women in Mathematics Series, 239–55. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04496-0_10.
Der volle Inhalt der QuelleRodríguez-Bernal, Aníbal, und Silvia Sastre-Gómez. „Nonlinear Nonlocal Reaction-Diffusion Equations“. In Advances in Differential Equations and Applications, 53–61. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06953-1_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Nonlocal equations in time"
Yamazaki, Noriaki. „Optimal control of nonlinear evolution equations associated with time-dependent subdifferentials and applications“. In Nonlocal and Abstract Parabolic Equations and their Applications. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2009. http://dx.doi.org/10.4064/bc86-0-20.
Der volle Inhalt der QuelleHishida, Toshiaki. „THE Navier-stokes flow around a rotating obstacle with time-dependent body force“. In Nonlocal and Abstract Parabolic Equations and their Applications. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2009. http://dx.doi.org/10.4064/bc86-0-9.
Der volle Inhalt der QuelleJakobsen, P. K., P. Ru und J. V. Moloney. „Nonlocal adiabatic elimination“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.mpp6.
Der volle Inhalt der QuelleDrin, Yaroslav M., I. I. Drin und S. S. Drin. „Representation of solution for fully nonlocal diffusion equations with deviation time variable“. In Correlation Optics 2017, herausgegeben von Oleg V. Angelsky. SPIE, 2018. http://dx.doi.org/10.1117/12.2304312.
Der volle Inhalt der QuelleNallathambi, K., A. Santhi und V. Govindan. „Fractional nonlocal integro-differential equations with time-varying generating operators and optimal control“. In INTERNATIONAL CONFERENCE ON RECENT TRENDS IN PURE AND APPLIED MATHEMATICS (ICRTPAM-2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0106502.
Der volle Inhalt der QuelleAshyralyev, Allaberen, und Charyyar Ashyralyyev. „Numerical solution of time-nonlocal problem for parabolic equation“. In 10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0114878.
Der volle Inhalt der QuelleRu, P., P. K. Jakobsen und J. V. Moloney. „Nonlocal Adiabatic Elimination in the Maxwell-Bloch Equation“. In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.mc6.
Der volle Inhalt der QuelleHamed, M., und K. Saanouni. „Elastoplastic Nonlocal Micromorphic Formulations With Damage Gradient“. In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82928.
Der volle Inhalt der QuelleYang, Ronggui, und Gang Chen. „Two-Dimensional Nanoscale Heat Conduction Using Ballistic-Diffusive Equations“. In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24141.
Der volle Inhalt der QuelleNabelek, Patrik, und Solomon C. Yim. „Riemann-Hilbert Formulation and Solution of Nonlinear Shallow-Water Wave Equations: Nonlocal Dbar Problem as a Unified Approach to Computing Exact Solutions in the Time Domain“. In ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/omae2023-108051.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Nonlocal equations in time"
Kunz, Christopher. Nonlocal fractional equations from random walks. Ames (Iowa): Iowa State University, Dezember 2023. http://dx.doi.org/10.31274/cc-20240624-1063.
Der volle Inhalt der QuelleD'Elia, Marta, Eugenio Aulisa, Giacomo Capodaglio und Andrea Chierici. Efficient quadrature rules for finite element discretizations of nonlocal equations. Office of Scientific and Technical Information (OSTI), Januar 2021. http://dx.doi.org/10.2172/1763180.
Der volle Inhalt der QuelleWorley, P. H. Parallelizing across time when solving time-dependent partial differential equations. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/6026480.
Der volle Inhalt der QuelleRau, A. Ravi P. Solving time-dependent operator equations for nanoscale physics. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/913061.
Der volle Inhalt der QuelleGottlieb, David. Spectral Methods for Time Dependent Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, November 1986. http://dx.doi.org/10.21236/ada182809.
Der volle Inhalt der QuelleGottlieb, David. High-Order Time-Domain Methods for Maxwells Equations. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada387163.
Der volle Inhalt der QuelleHills, Richard G. Addressing Model Form Error for Time-Dependent Conservation Equations. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1490528.
Der volle Inhalt der QuelleZhiquiang, C., und J. Jones. Least-Squares Approaches for the Time-Dependent Maxwell Equations. Office of Scientific and Technical Information (OSTI), Dezember 2001. http://dx.doi.org/10.2172/15002754.
Der volle Inhalt der QuelleShang, J. S. Characteristic Based Methods for the Time-Domain Maxwell Equations. Fort Belvoir, VA: Defense Technical Information Center, August 1993. http://dx.doi.org/10.21236/ada272973.
Der volle Inhalt der QuellePerugia, I., D. Schoetzau und P. Monk. Stabilized Interior Penalty Methods for the Time-Harmonic Maxwell Equations. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada437465.
Der volle Inhalt der Quelle