Dissertationen zum Thema „Nonlinear wave theories“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-16 Dissertationen für die Forschung zum Thema "Nonlinear wave theories" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Girard, Réjean. „Relativistic nonlinear wave equations with groups of internal symmetry“. Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75688.
Der volle Inhalt der QuelleHoseini, Sayed Mohammad. „Solitary wave interaction and evolution“. Access electronically, 2007. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20080221.110619/index.html.
Der volle Inhalt der QuelleKim, Won-Gyu 1962. „A Study of Nonlinear Dynamics in an Internal Water Wave Field in a Deep Ocean“. Thesis, University of North Texas, 1996. https://digital.library.unt.edu/ark:/67531/metadc278092/.
Der volle Inhalt der QuelleNarisetti, Raj K. „Wave propagation in nonlinear periodic structures“. Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/39643.
Der volle Inhalt der QuelleFranz, David, und University of Lethbridge Faculty of Arts and Science. „Turing patterns in linear chemical reaction systems with nonlinear cross diffusion“. Thesis, Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2007, 2007. http://hdl.handle.net/10133/659.
Der volle Inhalt der Quellevi, 55 leaves : ill. ; 29 cm.
Kuechler, Sebastian. „Wave Propagation in an Elastic Half-Space with Quadratic Nonlinearity“. Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19823.
Der volle Inhalt der QuelleKupčíková, Laura. „Částice plovoucí na volné hladině vln“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444637.
Der volle Inhalt der QuelleBraun, Michael Rainer. „Characterization of nonlinearity parameters in an elastic material with quadratic nonlinearity with a complex wave field“. Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26566.
Der volle Inhalt der QuelleCommittee Chair: Jacobs, Laurence; Committee Co-Chair: Qu, Jianmin; Committee Member: DesRoches, Reginald. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Aceves, Alejandro Borbolla. „Snell's laws at the interface between nonlinear dielectrics“. Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184467.
Der volle Inhalt der QuelleOhm, Won-suk. „Effects of dispersion on nonlinear surface acoustic waves in substrates laminated with films /“. Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3038194.
Der volle Inhalt der QuelleVorpe, Katherine. „Understanding a Population Model for Mussel-Algae Interaction“. Wittenberg University Honors Theses / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wuhonors1617970789779916.
Der volle Inhalt der Quelle„study of wave propagation in nonlinear dielectric multilayer system =: 電磁波於多層非線性電介質系統內傳播之硏究“. 1999. http://library.cuhk.edu.hk/record=b5890076.
Der volle Inhalt der QuelleThesis (M.Phil.)--Chinese University of Hong Kong, 1999.
Includes bibliographical references (leaves 67).
Text in English; abstracts in English and Chinese.
by Leung, Kwok Kong.
Abstract --- p.ii
Acknowledgement --- p.iii
Contents --- p.iv
List of Figures --- p.vi
Chapter Chapter 1. --- Introduction --- p.1
Chapter Chapter 2. --- Transmittance in Metal-Dielectric Multilayers --- p.4
Chapter 2.1 --- Introduction --- p.4
Chapter 2.2 --- Transfer matrix approach --- p.5
Chapter 2.3 --- Transfer matrix simulation --- p.7
Chapter 2.4 --- Physical explanation --- p.14
Chapter Chapter 3. --- Optical Nonlinear Response of Composite Layer --- p.17
Chapter 3.1 --- Transfer matrix formalism for oblique incidence --- p.18
Chapter 3.1.1 --- Transfer matrix method in nonlinear region --- p.18
Chapter 3.1.2 --- S-polarization --- p.19
Chapter 3.1.3 --- P-polarization --- p.19
Chapter 3.1.4 --- Backward propagation technique --- p.22
Chapter 3.2 --- Nonlinear phase shift --- p.22
Chapter 3.3 --- Transfer matrix method approach --- p.24
Chapter 3.4 --- Analytic solution formalism --- p.26
Chapter Chapter 4. --- Study of Photonic Band Gap of Nonlinear Dielectrics --- p.33
Chapter 4.1 --- Introduction --- p.33
Chapter 4.2 --- Nonlinear response of single thin nonlinear layer --- p.34
Chapter 4.3 --- Nonlinear response of δ-function between two linear dielectric --- p.37
Chapter 4.4 --- Photonic band structure --- p.41
Chapter 4.4.1 --- Photonic band structure of linear thin films --- p.41
Chapter 4.4.2 --- Photonic band structure of linear layers --- p.42
Chapter 4.5 --- Photonic band gap of nonlinear dielectric multilayers --- p.46
Chapter Chapter 5. --- Optical Limiting of Composite Material --- p.49
Chapter 5.1 --- Transmittance of periodic multilayer structures --- p.50
Chapter 5.1.1 --- Transmittance properties at low intensity --- p.50
Chapter 5.1.2 --- Transmittance at high intensity: optical limiting effect --- p.52
Chapter 5.2 --- The effect of layer thickness on optical limiting --- p.53
Chapter 5.3 --- Optical limiting property of PBG materials --- p.55
Chapter Chapter 6. --- Conclusion --- p.63
Chapter Appendix A. --- Effective dielectric function --- p.64
Bibliography --- p.67
Chang, Chia-Chin. „Nonlinear theories of forced surface waves in a circular basin“. 1999. http://catalog.hathitrust.org/api/volumes/oclc/43274575.html.
Der volle Inhalt der QuelleTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 203-205).
Sangeeta, K. „Numerical Simulation Of Converging Nonlinear Wavefronts“. Thesis, 1996. http://etd.iisc.ernet.in/handle/2005/1901.
Der volle Inhalt der Quelle„Nonlinear stability of viscous transonic flow through a nozzle“. 2004. http://library.cuhk.edu.hk/record=b5892103.
Der volle Inhalt der QuelleThesis (M.Phil.)--Chinese University of Hong Kong, 2004.
Includes bibliographical references (leaves 65-71).
Abstracts in English and Chinese.
Acknowledgments --- p.i
Abstract --- p.ii
Introduction --- p.3
Chapter 1 --- Stability of Shock Waves in Viscous Conservation Laws --- p.10
Chapter 1.1 --- Cauchy Problem for Scalar Viscous Conservation Laws and Viscous Shock Profiles --- p.10
Chapter 1.2 --- Stability of Shock Waves by Energy Method --- p.15
Chapter 1.3 --- Nonlinear Stability of Shock Waves by Spectrum Anal- ysis --- p.20
Chapter 1.4 --- L1 Stability of Shock Waves in Scalar Viscous Con- servation Laws --- p.26
Chapter 2 --- Propagation of a Viscous Shock in Bounded Domain and Half Space --- p.35
Chapter 2.1 --- Slow Motion of a Viscous Shock in Bounded Domain --- p.36
Chapter 2.1.1 --- Steady Problem and Projection Method --- p.36
Chapter 2.1.2 --- Projection Method for Time-Dependent Prob- lem --- p.40
Chapter 2.1.3 --- Super-Sensitivity of Boundary Conditions --- p.43
Chapter 2.1.4 --- WKB Transformation Method --- p.45
Chapter 2.2 --- Propagation of a Stationary Shock in Half Space --- p.50
Chapter 2.2.1 --- Asymptotic Analysis --- p.50
Chapter 2.2.2 --- Pointwise Estimate --- p.51
Chapter 3 --- Nonlinear Stability of Viscous Transonic Flow Through a Nozzle --- p.58
Chapter 3.1 --- Matched Asymptotic Analysis --- p.58
Bibliography --- p.65
Bruso, Keith Alvin. „Existence, uniqueness and blow-up results for non-linear wave equations“. 1985. http://hdl.handle.net/2097/27403.
Der volle Inhalt der Quelle