Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Nonlinear thermomechanical properties“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Nonlinear thermomechanical properties" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Nonlinear thermomechanical properties"
RAHMAN, S. M. MUJIBUR, und SAMIRA SALEK. „THERMOMECHANICAL PROPERTIES OF CERTAIN ELEMENTAL CRYSTALS“. International Journal of Modern Physics B 06, Nr. 18 (20.09.1992): 3069–77. http://dx.doi.org/10.1142/s0217979292002371.
Der volle Inhalt der QuelleKARAOGLU, B., und S. M. MUJIBUR RAHMAN. „THERMOMECHANICAL PROPERTIES OF 3d TRANSITION METALS“. International Journal of Modern Physics B 08, Nr. 11n12 (30.05.1994): 1639–54. http://dx.doi.org/10.1142/s0217979294000701.
Der volle Inhalt der QuelleZhang, Zhong, Wenjie Zhao, Ying Sun, Zhenyuan Gu, Wangping Qian und Hai Gong. „Thermoelastic Behaviors of Temperature-Dependent Multilayer Arches under Thermomechanical Loadings“. Buildings 13, Nr. 10 (16.10.2023): 2607. http://dx.doi.org/10.3390/buildings13102607.
Der volle Inhalt der QuelleZhang, Tao, Qiang Li, Jia-Jia Mao und Chunqing Zha. „Nonlinear Thermomechanical Low-Velocity Impact Behaviors of Geometrically Imperfect GRC Beams“. Materials 17, Nr. 24 (11.12.2024): 6062. https://doi.org/10.3390/ma17246062.
Der volle Inhalt der QuelleLIM, SHEAU HOOI, KAIYANG ZENG und CHAOBIN HE. „PREPARATION, MORPHOLOGY AND MECHANICAL PROPERTIES OF EPOXY NANOCOMPOSITES WITH ALUMINA FILLERS“. International Journal of Modern Physics B 24, Nr. 01n02 (20.01.2010): 136–47. http://dx.doi.org/10.1142/s021797921006406x.
Der volle Inhalt der QuelleHadi, Abbas, Hamid Reza Ovesy, Saeed Shakhesi und Jamshid Fazilati. „Large Amplitude Dynamic Analysis of FGM Cylindrical Shells on Nonlinear Elastic Foundation Under Thermomechanical Loads“. International Journal of Applied Mechanics 09, Nr. 07 (Oktober 2017): 1750105. http://dx.doi.org/10.1142/s1758825117501058.
Der volle Inhalt der QuelleKhorshidvand, A. R., und M. Jabbari. „Thermomechanical Analysis in FG Rotating Hollow Disk“. Applied Mechanics and Materials 110-116 (Oktober 2011): 148–54. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.148.
Der volle Inhalt der QuelleDasgupta, A., und S. M. Bhandarkar. „Effective Thermomechanical Behavior of Plain-Weave Fabric-Reinforced Composites Using Homogenization Theory“. Journal of Engineering Materials and Technology 116, Nr. 1 (01.01.1994): 99–105. http://dx.doi.org/10.1115/1.2904262.
Der volle Inhalt der QuelleTabouret, V., B. Viana und J. Petit. „ZnGa2Se4, a nonlinear material with wide mid infrared transparency and good thermomechanical properties“. Optical Materials: X 1 (Januar 2019): 100007. http://dx.doi.org/10.1016/j.omx.2019.100007.
Der volle Inhalt der QuelleChamis, C. C., P. L. N. Murthy, S. N. Singhal und J. J. Lackney. „HITCAN for Actively Cooled Hot-Composite Thermostructural Analysis“. Journal of Engineering for Gas Turbines and Power 114, Nr. 2 (01.04.1992): 315–20. http://dx.doi.org/10.1115/1.2906589.
Der volle Inhalt der QuelleDissertationen zum Thema "Nonlinear thermomechanical properties"
Mouiya, Mossaab. „Thermomechanical properties of refractory materials, influence of the diffuse microcracking“. Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0066.
Der volle Inhalt der QuelleRefractory materials are widely used in high-temperature applications but are not always prone to resist severe thermal shock. To address this problem, microstructure incorporating pre-existing microcracks are already well known to improve thermal shock resistance. Nevertheless, such damaged microstructure needs a better understanding to optimize their design without compromising material integrity. In such context, Aluminum Titanate (Al₂TiO₅, AT) exhibiting a great thermal expansion anisotropy, constitutes an ideal model system for creating a tailored microcracks network in order to improve flexibility and fracture behavior. This thesis investigates the thermomechanical properties of developed AT-based refractory materials, including polycrystalline AT and alumina/AT composites, with emphasis on the relationship between microstructure and macroscopic properties. In both materials, pre-existing microcracks play a key role on Young's modulus, thermal expansion behavior, tensile stress-strain response, fracture energy, and thus thermal shock resistance. A significant hysteretic effect on Young's modulus and thermal expansion as a function of temperature indicates microcracks closure-reopening mechanisms. Uniaxial tensile tests revealed nonlinear stress-strain laws, impacting fracture energy and thermal shock resistance. In particular, incremental tensile tests at 850 °C showed contrasting behaviors during heating and cooling, attributed to thermal history. Composite materials with AT inclusions (0 - 10 wt.%) embedded in an alumina matrix exhibit diffuse microcracking due to thermal expansion mismatch. These composites exhibited reduced Young's modulus, highly nonlinear stress-strain laws, and higher strain to rupture at room temperature. Thermal shock tests performed by the innovative ATHORNA device for all studied AT-based materials confirmed their resilience under high thermal gradients. These findings provide valuable insights for the design of future advanced refractory materials with improved thermal shock resistance
Bücher zum Thema "Nonlinear thermomechanical properties"
Kleiber, Michał, und Piotr Kowalczyk. Introduction to Nonlinear Thermomechanics of Solids. Springer, 2018.
Den vollen Inhalt der Quelle findenKleiber, Michał, und Piotr Kowalczyk. Introduction to Nonlinear Thermomechanics of Solids. Springer, 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Nonlinear thermomechanical properties"
Lenk, Claudia, Kalpan Ved, Steve Durstewitz, Tzvetan Ivanov, Martin Ziegler und Philipp Hövel. „Bio-inspired, Neuromorphic Acoustic Sensing“. In Springer Series on Bio- and Neurosystems, 287–315. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36705-2_12.
Der volle Inhalt der QuelleScott, N. H. „Linear dynamical stability in constrained thermoelasticity II. Deformation-entropy constraints“. In Nonlinear Elasticity and Theoretical Mechanics, 135–46. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780198534860.003.0012.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Nonlinear thermomechanical properties"
Chamis, C. C., P. L. N. Murthy, S. N. Singhal und J. J. Lackney. „Hitcan for Actively Cooled Hot-Composite Thermostructural Analysis“. In ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/91-gt-116.
Der volle Inhalt der QuelleWu, Tong, Kai Liu und Andres Tovar. „Multiphase Thermomechanical Topology Optimization of Functionally Graded Lattice Injection Molds“. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60538.
Der volle Inhalt der QuelleBirman, Victor, und George J. Simitses. „Theory of Box-Type Sandwich Shells With Dissimilar Facings Subjected to Thermomechanical Loads“. In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0374.
Der volle Inhalt der QuelleGajjar, Margi, und Himanshu Pathak. „XFEM Fracture Analysis of 2-D Plastically Graded Domain With Thermo-Mechanical J-Integral“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23355.
Der volle Inhalt der QuelleRauer, Georg, Arnold Kühhorn und Marcel Springmann. „Residual Stress Modelling and Inverse Heat Transfer Coefficients Estimation of a Nickel-Based Superalloy Disc Forging“. In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25827.
Der volle Inhalt der QuelleFarley, Daniel, Abhijit Dasgupta und J. F. J. M. Caers. „Characterization of Non-Conductive Adhesives“. In ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73021.
Der volle Inhalt der QuelleDonato, Gustavo Henrique B., und Fábio Gonçalves Cavalcante. „Influence of Plastic Prestrain on the Fatigue Crack Growth Resistance (da/dN vs. ΔK) of ASTM A36 Structural Steel“. In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45933.
Der volle Inhalt der Quelle