Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Nonlinear impact loads“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Nonlinear impact loads" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Nonlinear impact loads"
Masoum, M. A. S., E. F. Fuchs und D. J. Roesler. „Impact of nonlinear loads on anisotropic transformers“. IEEE Transactions on Power Delivery 6, Nr. 4 (1991): 1781–88. http://dx.doi.org/10.1109/61.97721.
Der volle Inhalt der QuelleSchellin, Thomas E., und Ould el Moctar. „Numerical Prediction of Impact-Related Wave Loads on Ships“. Journal of Offshore Mechanics and Arctic Engineering 129, Nr. 1 (08.11.2006): 39–47. http://dx.doi.org/10.1115/1.2429695.
Der volle Inhalt der QuelleGhorbani, M. Jawad, und Hossein Mokhtari. „Impact of Harmonics on Power Quality and Losses in Power Distribution Systems“. International Journal of Electrical and Computer Engineering (IJECE) 5, Nr. 1 (01.02.2015): 166. http://dx.doi.org/10.11591/ijece.v5i1.pp166-174.
Der volle Inhalt der QuelleArsava, K. Sarp, und Yeesock Kim. „Modeling of Magnetorheological Dampers under Various Impact Loads“. Shock and Vibration 2015 (2015): 1–20. http://dx.doi.org/10.1155/2015/905186.
Der volle Inhalt der QuelleLin, Jie, Chao Deng und Jia Chu Xu. „Nonlinear Dynamic Buckling of FGM Shallow Conical Shells under Triangular Pulse Impact Loads“. Advanced Materials Research 460 (Februar 2012): 119–26. http://dx.doi.org/10.4028/www.scientific.net/amr.460.119.
Der volle Inhalt der QuelleDu, Chang Long, Yu Liu und Jian Ping Li. „Numerical Analysis on Impact Load of Elasto-Plastic Spherical Impact“. Advanced Materials Research 189-193 (Februar 2011): 1840–43. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.1840.
Der volle Inhalt der QuelleManito, Allan, Ubiratan Bezerra, Maria Tostes, Edson Matos, Carminda Carvalho und Thiago Soares. „Evaluating Harmonic Distortions on Grid Voltages Due to Multiple Nonlinear Loads Using Artificial Neural Networks“. Energies 11, Nr. 12 (26.11.2018): 3303. http://dx.doi.org/10.3390/en11123303.
Der volle Inhalt der QuelleSarp Arsava, Kemal, Yeesock Kim, Tahar El-Korchi und Hyo Seon Park. „Nonlinear system identification of smart structures under high impact loads“. Smart Materials and Structures 22, Nr. 5 (03.04.2013): 055008. http://dx.doi.org/10.1088/0964-1726/22/5/055008.
Der volle Inhalt der QuelleFinn, Patrick J., Robert F. Beck, Armin W. Troesch und Yung Sup Shin. „Nonlinear Impact Loading in an Oblique Seaway“. Journal of Offshore Mechanics and Arctic Engineering 125, Nr. 3 (11.07.2003): 190–97. http://dx.doi.org/10.1115/1.1578499.
Der volle Inhalt der QuellePiatkowski, Tomasz, Janusz Sempruch und Tomasz Tomaszewski. „DYNAMICS OF A SORTING PROCESS WITH A STREAM OF DISCRETE IMPACT LOADS“. Transactions of the Canadian Society for Mechanical Engineering 38, Nr. 1 (März 2014): 139–54. http://dx.doi.org/10.1139/tcsme-2014-0009.
Der volle Inhalt der QuelleDissertationen zum Thema "Nonlinear impact loads"
Arsava, Kemal Sarp. „Modeling, Control and Monitoring of Smart Structures under High Impact Loads“. Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-dissertations/105.
Der volle Inhalt der QuelleAbdolmaleki, Kourosh. „Modelling of wave impact on offshore structures“. University of Western Australia. School of Mechanical Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0055.
Der volle Inhalt der QuelleBarakati, Amir. „Dynamic interactions of electromagnetic and mechanical fields in electrically conductive anisotropic composites“. Diss., University of Iowa, 2012. https://ir.uiowa.edu/etd/3562.
Der volle Inhalt der QuelleElMohandes, Fady. „Advanced Three-dimensional Nonlinear Analysis of Reinforced Concrete Structures Subjected to Fire and Extreme Loads“. Thesis, 2013. http://hdl.handle.net/1807/43945.
Der volle Inhalt der QuelleRylander, Matthew Robert 1981. „Single-phase nonlinear power electronic loads: modeling and impact on power system transient response and stability“. Thesis, 2008. http://hdl.handle.net/2152/3939.
Der volle Inhalt der Quelletext
Hrynyk, Trevor. „Behaviour and Modelling of Reinforced Concrete Slabs and Shells Under Static and Dynamic Loads“. Thesis, 2013. http://hdl.handle.net/1807/35851.
Der volle Inhalt der QuelleBücher zum Thema "Nonlinear impact loads"
Hayden, Griffin O., Johnson Eric R und United States. National Aeronautics and Space Administration., Hrsg. Static and dynamic large deflection flexural response of graphite-epoxy beams. Blacksburg, Va: Virginia Tech Center for Composite Materials and Structures, Virginia Polytechnic Institute and State University, 1987.
Den vollen Inhalt der Quelle findenHayden, Griffin O., Johnson Eric R und United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., Hrsg. Static and dynamic large deflection flexural response of graphite-epoxy beams. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Nonlinear impact loads"
Zhang, Jinghua, Shuai Chen und Like Chen. „Dynamic Buckling of FGM Cylindrical Shells Under Torsional Impact Loads“. In New Trends in Nonlinear Dynamics, 109–17. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34724-6_12.
Der volle Inhalt der QuelleIbrahimbegovic, Adnan, und Naida Ademovicć. „The dynamics of extreme impact loads in an airplane crash“. In Nonlinear Dynamics of Structures Under Extreme Transient Loads, 145–64. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9781351052504-6.
Der volle Inhalt der QuelleLiu, Yu, Andrew J. Dick, Jacob Dodson und Jason Foley. „Nonlinear High Fidelity Modeling of Impact Load Response in a Rod“. In Topics in Modal Analysis II, Volume 8, 129–34. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04774-4_12.
Der volle Inhalt der QuelleGorripotu, Tulasichandra Sekhar, Ahmad Taher Azar, Ramana Pilla und Nashwa Ahmad Kamal. „Impact of Ultra Capacitor on Automatic Load Frequency Control of Nonlinear Power System“. In Lecture Notes in Electrical Engineering, 333–41. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8439-8_27.
Der volle Inhalt der QuelleAwrejcewicz, Jan, und Vadim Anatolevich Krysko. „Nonlinear Vibrations of the Euler-Bernoulli Beam Subjected to Transversal Load and Impact Actions“. In Understanding Complex Systems, 357–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77676-5_16.
Der volle Inhalt der QuelleGuo, Baoquan, Shilin Xie und Xinong Zhang. „The Nonlinear Vibration of Axially Moving Beam Impacted by High-Speed Moving Load“. In Computational Mechanics, 402. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75999-7_202.
Der volle Inhalt der QuelleZhou, Shibo, und Wenjun Zhang. „Nonlinear Finite-Element Analysis of Offshore Platform Impact Load Based on Two-Stage PLS-RBF Neural Network“. In Communications in Computer and Information Science, 508–17. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2826-8_44.
Der volle Inhalt der QuelleKhan, Shoaib. „Impact of Nonlinear Loads on Power System and Equipment“. In Industrial Power Systems, 429–46. CRC Press, 2018. http://dx.doi.org/10.1201/9781420015393-16.
Der volle Inhalt der Quelle„Impact of Nonlinear Loads on Power System and Equipment“. In Industrial Power Systems, 429–46. CRC Press, 2007. http://dx.doi.org/10.1201/9781420015393.ch16.
Der volle Inhalt der QuelleOyguc, Evrim, Abdul Hayır und Resat Oyguc. „Structural Modeling and Dynamic Analysis of a Nuclear Reactor Building“. In Structural Integrity and Failure [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94956.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Nonlinear impact loads"
Peng, Zhong, Tim Raaijmakers und Peter Wellens. „Nonlinear Wave Group Impact on a Cylindrical Monopile“. In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10838.
Der volle Inhalt der QuelleAbdel-Mooty, M., und S. Shaaban. „Nonlinear dynamic response of RC building façade panels to impact loads“. In SUSI 2012. Southampton, UK: WIT Press, 2012. http://dx.doi.org/10.2495/su120251.
Der volle Inhalt der QuelleSchellin, Thomas E., und Ould El Moctar. „Numerical Prediction of Impact-Related Wave Loads on Ships“. In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92133.
Der volle Inhalt der QuelleMaheswaran, D., A. Kalyanasundaram und S. Kameshwaran. „Power quality issues in a distribution network impact of neutral current due to nonlinear loads“. In 2006 India International Conference on Power Electronics (IICPE 2006). IEEE, 2006. http://dx.doi.org/10.1109/iicpe.2006.4685358.
Der volle Inhalt der Quelleda Silveira, Lucas C., Daniel P. Bernardon und Caroline Raduns. „Elaboration of an impact study on the medium voltage electrical system caused by nonlinear loads“. In 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE) [VII Brazilian Electrical Systems Symposium (SBSE)]. IEEE, 2018. http://dx.doi.org/10.1109/sbse.2018.8395617.
Der volle Inhalt der QuelleLiu, Zhenhui, Ragnar Igland, Sindre Bruaseth und Luca Ercoli-Malacari. „Dynamic Analysis of a Subsea Spool Under Dropped Container Impact Loads“. In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18578.
Der volle Inhalt der QuelleBirknes-Berg, Jørn, und Thomas Berge Johannessen. „Methods for Establishing Governing Deck Impact Loads in Irregular Waves“. In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-42236.
Der volle Inhalt der QuelleMansour, Alaa M., Edward W. Huang und John W. Chianis. „Submergence and Wave Impact Loads During Dry Transportation of an Offshore Structure“. In ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/omae2004-51517.
Der volle Inhalt der QuelleMortazavi, Maryam, und YeongAe Heo. „Dynamic Constitutive Model Application and Validation for Offshore Structures Under Dropped Object Impact Loads“. In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-78048.
Der volle Inhalt der QuelleShah, S. J., und B. Brenneman. „Fuel Assembly Nonlinear Dynamic Model“. In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22269.
Der volle Inhalt der Quelle