Auswahl der wissenschaftlichen Literatur zum Thema „Nonlinear control methods“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Nonlinear control methods" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Nonlinear control methods"

1

Conte, G., C. Moog und A. Perdon. „Algebraic Methods for Nonlinear Control Systems“. IEEE Transactions on Automatic Control 52, Nr. 12 (Dezember 2007): 2395–96. http://dx.doi.org/10.1109/tac.2007.911476.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

CARMICHAEL, N., und M. D. QUINN. „Fixed-Point Methods in Nonlinear Control“. IMA Journal of Mathematical Control and Information 5, Nr. 1 (1988): 41–67. http://dx.doi.org/10.1093/imamci/5.1.41.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Han, Jing-Qing. „Nonlinear design methods for control systems“. IFAC Proceedings Volumes 32, Nr. 2 (Juli 1999): 1531–36. http://dx.doi.org/10.1016/s1474-6670(17)56259-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hager, William W. „Multiplier Methods for Nonlinear Optimal Control“. SIAM Journal on Numerical Analysis 27, Nr. 4 (August 1990): 1061–80. http://dx.doi.org/10.1137/0727063.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Porubov, Alexey, und Boris Andrievsky. „Control methods for localization of nonlinear waves“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, Nr. 2088 (06.03.2017): 20160212. http://dx.doi.org/10.1098/rsta.2016.0212.

Der volle Inhalt der Quelle
Annotation:
A general form of a distributed feedback control algorithm based on the speed–gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions. This article is part of the themed issue ‘Horizons of cybernetical physics’.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Almashaal, M. J., und A. R. Gaiduk. „METHODS COMPARISON OF NONLINEAR CONTROL SYSTEMS DESIGN“. Mathematical Methods in Technologies and Technics, Nr. 4 (2021): 21–24. http://dx.doi.org/10.52348/2712-8873_mmtt_2021_4_21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hedrick, J. Karl, und Swaminathan Gopalswamy. „Nonlinear flight control design via sliding methods“. Journal of Guidance, Control, and Dynamics 13, Nr. 5 (September 1990): 850–58. http://dx.doi.org/10.2514/3.25411.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shakeel, Tanzeela, Jehangir Arshad, Mujtaba Hussain Jaffery, Ateeq Ur Rehman, Elsayed Tag Eldin, Nivin A. Ghamry und Muhammad Shafiq. „A Comparative Study of Control Methods for X3D Quadrotor Feedback Trajectory Control“. Applied Sciences 12, Nr. 18 (15.09.2022): 9254. http://dx.doi.org/10.3390/app12189254.

Der volle Inhalt der Quelle
Annotation:
Unmanned aerial vehicles (UAVs), particularly quadrotor, have seen steady growth in use over the last several decades. The quadrotor is an under-actuated nonlinear system with few actuators in comparison to the degree of freedom (DOF); hence, stabilizing its attitude and positions is a significant challenge. Furthermore, the inclusion of nonlinear dynamic factors and uncertainties makes controlling its maneuverability more challenging. The purpose of this research is to design, implement, and evaluate the effectiveness of linear and nonlinear control methods for controlling an X3D quadrotor’s intended translation position and rotation angles while hovering. The dynamics of the X3D quadrotor model were implemented in Simulink. Two linear controllers, linear quadratic regulator (LQR) and proportional integral derivate (PID), and two nonlinear controllers, fuzzy controller (FC) and model reference adaptive PID Controller (MRAPC) employing the MIT rule, were devised and implemented for the response analysis. In the MATLAB Simulink Environment, the transient performance of nonlinear and linear controllers for an X3D quadrotor is examined in terms of settling time, rising time, peak time, delay time, and overshoot. Simulation results suggest that the LQR control approach is better because of its robustness and comparatively superior performance characteristics to other controllers, particularly nonlinear controllers, listed at the same operating point, as overshoot is 0.0% and other factors are minimal for the x3D quadrotor. In addition, the LQR controller is intuitive and simple to implement. In this research, all control approaches were verified to provide adequate feedback for quadrotor stability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gaiduk, A. R., S. G. Kapustyan und M. J. Almashaal. „Comparison of methods of nonlinear control systems design“. Vestnik IGEU, Nr. 6 (28.12.2021): 54–61. http://dx.doi.org/10.17588/2072-2672.2021.6.054-061.

Der volle Inhalt der Quelle
Annotation:
The issue of designing nonlinear control systems is a complex problem. A lot of methods are known that allow us to find a suitable control for a given nonlinear object that provides asymptotic stability of the nonlinear system equilibrium and an acceptable quality of the transient process. Many of these methods are difficult to apply in practice. Thus, comparing some of the methods in terms of simplicity of use is of great interest. Two analytical methods for the synthesis of nonlinear control systems are considered. They are the algebraic polynomial-matrix method that uses a quasilinear model, and the feedback linearization method that uses the Brunovsky model in combination with special feedbacks. A comparative analysis of the algebraic polynomial-matrix method and the feedback linearization method is carried out. It is found out that the algebraic polynomial-matrix method (APM) is much simpler than the feedback linearization method (FLM). A numerical example of designing a system that is synthesized by these methods is considered. It is found out that the system synthesized by the APM method has a region of attraction of the equilibrium position twice as large as the region of attraction of the system synthesized by the FLM method. It is reasonable to use the algebraic polynomial-matrix method with the quasilinear models in case of synthesis of control systems of objects with differentiable nonlinearities.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bartolini, G., E. Punta und T. Zolezzi. „Simplex Methods for Nonlinear Uncertain Sliding-Mode Control“. IEEE Transactions on Automatic Control 49, Nr. 6 (Juni 2004): 922–33. http://dx.doi.org/10.1109/tac.2004.829617.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Nonlinear control methods"

1

Cho, Dong-Il. „Nonlinear control methods for automotive powertrain systems“. Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/14682.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Benouarets, Mourad. „Some design methods for linear and nonlinear controllers“. Thesis, University of Sussex, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333454.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Huynh, Nguyen. „Digital control and monitoring methods for nonlinear processes“. Link to electronic thesis, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-100906-083012/.

Der volle Inhalt der Quelle
Annotation:
Dissertation (Ph.D.)--Worcester Polytechnic Institute.
Keywords: Parametric optimization; nonlinear dynamics; functional equations; chemical reaction system dynamics; time scale multiplicity; robust control; nonlinear observers; invariant manifold; process monitoring; Lyapunov stability. Includes bibliographical references (leaves 92-98).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Verschueren, Robin [Verfasser], und Moritz [Akademischer Betreuer] Diehl. „Convex approximation methods for nonlinear model predictive control“. Freiburg : Universität, 2018. http://d-nb.info/1192660641/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Blanchard, Eunice Anita. „Exact penalty methods for nonlinear optimal control problems“. Thesis, Curtin University, 2014. http://hdl.handle.net/20.500.11937/1805.

Der volle Inhalt der Quelle
Annotation:
Research comprised of developing solution techniques to three classes of non-standard optimal control problems, namely: optimal control problems with discontinuous objective functions arising in aquaculture operations; impulsive optimal control problems with minimum subsystem durations; optimal control problems involving dual-mode hybrid systems with state-dependent switching conditions. The numerical algorithms developed involved an exact penalty approach to transform the constrained problem into an unconstrained problem which was readily solvable by a standard optimal control software.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Altafini, Claudio. „Geometric control methods for nonlinear systems and robotic applications“. Doctoral thesis, Stockholm : Tekniska högsk, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3151.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Nanka-Bruce, Oona. „Some computer aided design methods for nonlinear control systems“. Thesis, University of Sussex, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252934.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wang, Dazhong. „Polynomial level-set methods for nonlinear dynamics and control /“. May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kasnakoglu, Cosku. „Reduced order modeling, nonlinear analysis and control methods for flow control problems“. Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1195629380.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Haskara, Ibrahim. „Sliding mode estimation and optimization methods in nonlinear control problems“. The Ohio State University, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=osu1250272986.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Nonlinear control methods"

1

Lennart, Ljung, Hrsg. Control theory: Multivariable and nonlinear methods. London: Taylor & Francis, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Conte, Giuseppe, Claude H. Moog und Anna Maria Perdon. Algebraic Methods for Nonlinear Control Systems. London: Springer London, 2007. http://dx.doi.org/10.1007/978-1-84628-595-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Glad, Torkel. Control theory: Multivariable and nonlinear methods. London: Taylor & Francis, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lu, X. Y. Differential algebraic methods in nonlinear control theory. Manchester: UMIST, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Turner, Matthew C., und Declan G. Bates, Hrsg. Mathematical Methods for Robust and Nonlinear Control. London: Springer London, 2007. http://dx.doi.org/10.1007/978-1-84800-025-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Max-plus methods for nonlinear control and estimation. Boston: Birkhäuser, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Max-plus methods for nonlinear control and estimation. Boston, MA: Birkhauser, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Martínez-Guerra, Rafael, Oscar Martínez-Fuentes und Juan Javier Montesinos-García. Algebraic and Differential Methods for Nonlinear Control Theory. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12025-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Allgüwer, F., P. Fleming, P. Kokotovic, A. B. Kurzhanski, H. Kwakernaak, A. Rantzer, J. N. Tsitsiklis, Francesco Bullo und Kenji Fujimoto, Hrsg. Lagrangian and Hamiltonian Methods for Nonlinear Control 2006. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73890-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Fliess, M., und M. Hazewinkel, Hrsg. Algebraic and Geometric Methods in Nonlinear Control Theory. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4706-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Nonlinear control methods"

1

Vinagre, Blas M., Inés Tejado und S. Hassan HosseinNia. „Nonlinear control methods“. In Applications in Control, herausgegeben von Ivo Petráš, 1–28. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110571745-001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lantos, Béla, und Lőrinc Márton. „Basic Nonlinear Control Methods“. In Nonlinear Control of Vehicles and Robots, 11–80. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84996-122-6_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Grimble, Michael J., und Paweł Majecki. „Nonlinear Estimation Methods: Polynomial Systems Approach“. In Nonlinear Industrial Control Systems, 553–96. London: Springer London, 2020. http://dx.doi.org/10.1007/978-1-4471-7457-8_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wagg, David, und Simon Neild. „Approximate Methods for Analysing Nonlinear Vibrations“. In Nonlinear Vibration with Control, 145–209. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10644-1_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Westphal, Louis C. „Linearization methods for nonlinear systems“. In Handbook of Control Systems Engineering, 745–806. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1533-3_33.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Raković, Saša V. „Set Theoretic Methods in Model Predictive Control“. In Nonlinear Model Predictive Control, 41–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01094-1_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kawski, Matthias. „Lie Algebraic Methods in Nonlinear Control“. In Encyclopedia of Systems and Control, 631–36. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-5058-9_79.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Krener, A. J. „Differential Geometric Methods in Nonlinear Control“. In Encyclopedia of Systems and Control, 275–84. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-5058-9_80.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kawski, Matthias. „Lie Algebraic Methods in Nonlinear Control“. In Encyclopedia of Systems and Control, 1–7. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-5102-9_79-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Krener, A. J. „Differential Geometric Methods in Nonlinear Control“. In Encyclopedia of Systems and Control, 1–14. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5102-9_80-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Nonlinear control methods"

1

Markley, F. Landis, John Crassidis und Yang Cheng. „Nonlinear Attitude Filtering Methods“. In AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-5927.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bugajski, Daniel, Dale Enns und Allen Tannenbaum. „Synthesis Methods for Robust Nonlinear Control“. In 1993 American Control Conference. IEEE, 1993. http://dx.doi.org/10.23919/acc.1993.4792914.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Fenili, André. „Nonlinear Control of a Rotating Smart Beam“. In XXXVIII Iberian-Latin American Congress on Computational Methods in Engineering. Florianopolis, Brazil: ABMEC Brazilian Association of Computational Methods in Engineering, 2017. http://dx.doi.org/10.20906/cps/cilamce2017-0230.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Harinath, Eranda, Lucas C. Foguth, Joel A. Paulson und Richard D. Braatz. „Nonlinear model predictive control using polynomial optimization methods“. In 2016 American Control Conference (ACC). IEEE, 2016. http://dx.doi.org/10.1109/acc.2016.7524882.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhirabok, Alexey N., und Sergey A. Usoltsev. „Linear methods for fault diagnosis in nonlinear systems“. In 2001 European Control Conference (ECC). IEEE, 2001. http://dx.doi.org/10.23919/ecc.2001.7076106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Taylor, James H. „Robust Nonlinear Control Based on Describing Function Methods“. In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0299.

Der volle Inhalt der Quelle
Annotation:
Abstract The robust control problem for nonlinear systems is discussed from the standpoint of the amplitude sensitivity of the nonlinear plant and final control system. Failure to recognize and accommodate this factor may give rise to nonlinear control systems that behave differently for small versus large input excitation, or perhaps exhibit limit cycles or instability. Sinusoidal-input describing functions (sidfs) are shown to be effective in dealing with amplitude sensitivity in two areas: modeling (providing plant models that achieve an excellent trade-off between conservatism and robustness) and nonlinear control synthesis. In addition, sidf-based modeling and synthesis approaches are broadly applicable. Several practical SIDF-based nonlinear compensator synthesis approaches are presented and illustrated via application to a position control problem.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Muske, K. R., J. W. Howse und G. A. Hansen. „Lagrangian solution methods for nonlinear model predictive control“. In Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.877020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zwierzewicz, Zenon. „Adaptive tracking control of uncertain SISO nonlinear systems“. In 2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR). IEEE, 2012. http://dx.doi.org/10.1109/mmar.2012.6347863.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kouzoupis, D., H. J. Ferreau, H. Peyrl und M. Diehl. „First-order methods in embedded nonlinear model predictive control“. In 2015 European Control Conference (ECC). IEEE, 2015. http://dx.doi.org/10.1109/ecc.2015.7330932.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Rigatos, Gerasimos, Pierluigi Siano und Ivan Arsie. „Nonlinear control of valves in diesel engines using the derivative-free nonlinear Kalman Filter“. In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4897716.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Nonlinear control methods"

1

Malisoff, Michael A., und Peter R. Wolenski. Theory, Methods, and Applications of Nonlinear Control. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada582269.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Shamma, Jeff S. Set-Valued Methods for Robust Nonlinear Control. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1998. http://dx.doi.org/10.21236/ada383800.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mezic, Igor. Nonlinear Dynamics and Ergodic Theory Methods in Control. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2005. http://dx.doi.org/10.21236/ada451673.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mezic, Igor. Nonlinear Dynamics and Ergodic Theory Methods in Control. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada418975.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Fitzpatrick, Ben G. Idempotent Methods for Continuous Time Nonlinear Stochastic Control. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada580394.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rugh, Wilson J. Analysis and Design Methods for Nonlinear Control Systems. Fort Belvoir, VA: Defense Technical Information Center, März 1990. http://dx.doi.org/10.21236/ada221621.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Banks, H. T. Computational Methods for Control of Nonlinear Fluid/Structure Problems. Fort Belvoir, VA: Defense Technical Information Center, April 1997. http://dx.doi.org/10.21236/ada329638.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ydstie, B. E. Multivariable and distributed control of nonlinear chemical processes using adaptive methods. Office of Scientific and Technical Information (OSTI), Januar 1988. http://dx.doi.org/10.2172/5469742.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tannenbaum, Allen R. Operator Theoretic Methods in the Control of Distributed and Nonlinear Systems. Fort Belvoir, VA: Defense Technical Information Center, November 1993. http://dx.doi.org/10.21236/ada274160.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ydstie, B. E. Multivariable and distributed control of nonlinear chemical processes using adaptive methods. Final report, February 1, 1985--January 31, 1988. Office of Scientific and Technical Information (OSTI), Dezember 1988. http://dx.doi.org/10.2172/10136602.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie