Zeitschriftenartikel zum Thema „Nonlinear borates“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Nonlinear borates" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Yu, Daqiu, und Dongfeng Xue. „Bond analyses of borates from the Inorganic Crystal Structure Database“. Acta Crystallographica Section B Structural Science 62, Nr. 5 (18.09.2006): 702–9. http://dx.doi.org/10.1107/s0108768106018520.
Der volle Inhalt der QuelleLi, Linyan, Guobao Li, Yingxia Wang, Fuhui Liao und Jianhua Lin. „Bismuth Borates: One-Dimensional Borate Chains and Nonlinear Optical Properties“. Chemistry of Materials 17, Nr. 16 (August 2005): 4174–80. http://dx.doi.org/10.1021/cm050215d.
Der volle Inhalt der QuelleFoldv´ari, Istvan, Katalin Polg´ar, Agnes P´eter, Elena Beregi und Zsuzsanna Szaller. „Growth and study of nonlinear optical crystals at the Hungarian Academy of Sciences“. Journal of Telecommunications and Information Technology, Nr. 1-2 (30.06.2000): 37–41. http://dx.doi.org/10.26636/jtit.2000.1-2.15.
Der volle Inhalt der QuellePlachinda, Paul A., Valery A. Dolgikh, Sergey Yu Stefanovich und Petr S. Berdonosov. „Nonlinear-optical susceptibility of hilgardite-like borates ; )“. Solid State Sciences 7, Nr. 10 (Oktober 2005): 1194–200. http://dx.doi.org/10.1016/j.solidstatesciences.2005.05.006.
Der volle Inhalt der QuelleVolkova, Elena A., Daniil A. Naprasnikov und Nikolay I. Leonyuk. „Thin Films and Glass–Ceramic Composites of Huntite Borates Family: A Brief Review“. Crystals 10, Nr. 6 (06.06.2020): 487. http://dx.doi.org/10.3390/cryst10060487.
Der volle Inhalt der QuelleWu, Chao, Longhua Li, Junling Song, Gang Yang, Mark G. Humphrey und Chi Zhang. „Solvent-controlled syntheses of mixed-alkali-metal borates exhibiting UV nonlinear optical properties“. Inorganic Chemistry Frontiers 4, Nr. 4 (2017): 692–700. http://dx.doi.org/10.1039/c7qi00001d.
Der volle Inhalt der QuelleReshak, A. H., und S. Auluck. „Two haloid borate crystals with large nonlinear optical response“. Physical Chemistry Chemical Physics 19, Nr. 28 (2017): 18416–25. http://dx.doi.org/10.1039/c7cp02364b.
Der volle Inhalt der QuelleWu, L., Y. Zhang, W. W. Su, Y. F. Kong und J. J. Xu. „Structural study of nonlinear optical borates K1−xNaxSr4(BO3)3 (x≤0.5)“. Powder Diffraction 25, S1 (September 2010): S11—S16. http://dx.doi.org/10.1154/1.3478412.
Der volle Inhalt der QuelleYao, Wenjiao, Ran He, Xiaoyang Wang, Zheshuai Lin und Chuangtian Chen. „Borates: Analysis of Deep-UV Nonlinear Optical Borates: Approaching the End (Advanced Optical Materials 5/2014)“. Advanced Optical Materials 2, Nr. 5 (Mai 2014): 410. http://dx.doi.org/10.1002/adom.201470030.
Der volle Inhalt der QuelleKang, Lei, Pifu Gong, Zheshuai Lin und Bing Huang. „Deep‐Ultraviolet Nonlinear‐Optical van‐der‐Waals Beryllium Borates**“. Angewandte Chemie International Edition 60, Nr. 30 (18.06.2021): 16680–86. http://dx.doi.org/10.1002/anie.202105789.
Der volle Inhalt der QuelleKang, Lei, Pifu Gong, Zheshuai Lin und Bing Huang. „Deep‐Ultraviolet Nonlinear‐Optical van‐der‐Waals Beryllium Borates**“. Angewandte Chemie 133, Nr. 30 (18.06.2021): 16816–22. http://dx.doi.org/10.1002/ange.202105789.
Der volle Inhalt der QuelleWei, Qi, Li Sun, Jie Zhang und Guo-Yu Yang. „Two deep-ultraviolet nonlinear optical alkaline-earth metal borates based on different types of oxoboron clusters“. Dalton Transactions 46, Nr. 24 (2017): 7911–16. http://dx.doi.org/10.1039/c7dt01677h.
Der volle Inhalt der QuelleSubanakov, Alexey K., Evgeniy V. Kovtunets, Sampil Zh Choydonov, Sesegma G. Dorzhieva und Bair G. Bazarov. „Синтез и характеризация нового двойного бората рубидия–гольмия Rb3HoB6O12“. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, Nr. 2 (14.06.2019): 278–86. http://dx.doi.org/10.17308/kcmf.2019.21/765.
Der volle Inhalt der QuelleYao, Wenjiao, Ran He, Xiaoyang Wang, Zheshuai Lin und Chuangtian Chen. „Analysis of Deep-UV Nonlinear Optical Borates: Approaching the End“. Advanced Optical Materials 2, Nr. 5 (28.02.2014): 411–17. http://dx.doi.org/10.1002/adom.201300535.
Der volle Inhalt der QuelleWei, Qi, Chao He, Bang-Di Ge, Meng-Xin Wan, Li Wei und Guo-Ming Wang. „Zeolitic Open-Framework Borates with Noncentrosymmetric Structures and Nonlinear Optical Properties“. Inorganic Chemistry 58, Nr. 5 (13.02.2019): 3527–34. http://dx.doi.org/10.1021/acs.inorgchem.9b00101.
Der volle Inhalt der QuelleGiesber, H. „Synthesis and characterization of optically nonlinear and light emitting lanthanide borates“. Information Sciences 149, Nr. 1-3 (Januar 2003): 61–68. http://dx.doi.org/10.1016/s0020-0255(02)00245-1.
Der volle Inhalt der QuelleMutailipu, Miriding, Min Zhang, Zhihua Yang und Shilie Pan. „Targeting the Next Generation of Deep-Ultraviolet Nonlinear Optical Materials: Expanding from Borates to Borate Fluorides to Fluorooxoborates“. Accounts of Chemical Research 52, Nr. 3 (22.02.2019): 791–801. http://dx.doi.org/10.1021/acs.accounts.8b00649.
Der volle Inhalt der QuelleZhang, Bingbing, Xiaodong Zhang, Jin Yu, Ying Wang, Kui Wu und Ming-Hsien Lee. „First-Principles High-Throughput Screening Pipeline for Nonlinear Optical Materials: Application to Borates“. Chemistry of Materials 32, Nr. 15 (16.07.2020): 6772–79. http://dx.doi.org/10.1021/acs.chemmater.0c02583.
Der volle Inhalt der QuelleAtuchin, V. V., B. G. Bazarov, T. A. Gavrilova, V. G. Grossman, M. S. Molokeev und Zh G. Bazarova. „Preparation and structural properties of nonlinear optical borates K2(1−x)Rb2xAl2B2O7, 0“. Journal of Alloys and Compounds 515 (Februar 2012): 119–22. http://dx.doi.org/10.1016/j.jallcom.2011.11.115.
Der volle Inhalt der QuelleSun, Zhenjie. „Application of third-order nonlinear optical materials in complex crystalline chemical reactions of borates“. Nonlinear Engineering 11, Nr. 1 (01.01.2022): 609–14. http://dx.doi.org/10.1515/nleng-2022-0234.
Der volle Inhalt der QuelleMutailipu, Miriding, Zhiqing Xie, Xin Su, Min Zhang, Ying Wang, Zhihua Yang, Muhammad Ramzan Saeed Ashraf Janjua und Shilie Pan. „Chemical Cosubstitution-Oriented Design of Rare-Earth Borates as Potential Ultraviolet Nonlinear Optical Materials“. Journal of the American Chemical Society 139, Nr. 50 (07.12.2017): 18397–405. http://dx.doi.org/10.1021/jacs.7b11263.
Der volle Inhalt der QuelleYan, Xue, Siyang Luo, Zheshuai Lin, Jiyong Yao, Ran He, Yinchao Yue und Chuangtian Chen. „ReBe2B5O11 (Re = Y, Gd): Rare-Earth Beryllium Borates as Deep-Ultraviolet Nonlinear-Optical Materials“. Inorganic Chemistry 53, Nr. 4 (28.01.2014): 1952–54. http://dx.doi.org/10.1021/ic4029436.
Der volle Inhalt der QuelleCai, Wenbing, Qun Jing und Jun Zhang. „Lone pair electron effect induced differences in linear and nonlinear optical properties of bismuth borates“. New Journal of Chemistry 44, Nr. 4 (2020): 1228–35. http://dx.doi.org/10.1039/c9nj05873g.
Der volle Inhalt der QuelleQiu, Qi-Ming, und Guo-Yu Yang. „Two deep-ultraviolet nonlinear optical barium borates framework: Alkali metal enhances the second-harmonic generation response“. Journal of Solid State Chemistry 301 (September 2021): 122303. http://dx.doi.org/10.1016/j.jssc.2021.122303.
Der volle Inhalt der QuelleYan, Xue, Siyang Luo, Zheshuai Lin, Jiyong Yao, Ran He, Yinchao Yue und Chuangtian Chen. „ChemInform Abstract: REBe2B5O11(RE: Y, Gd): Rare-Earth Beryllium Borates as Deep-Ultraviolet Nonlinear-Optical Materials.“ ChemInform 45, Nr. 16 (03.04.2014): no. http://dx.doi.org/10.1002/chin.201416015.
Der volle Inhalt der QuelleZhang, Bingbing, Zhihua Yang, Yun Yang, Ming-Hsien Lee, Shilie Pan, Qun Jing und Xin Su. „p–(p,π*) interaction mechanism revealing and accordingly designed new member in deep-ultraviolet NLO borates LinMn−1B2n−1O4n−2 (M = Cs/Rb, n = 3, 4, 6)“. J. Mater. Chem. C 2, Nr. 21 (2014): 4133–41. http://dx.doi.org/10.1039/c4tc00363b.
Der volle Inhalt der QuelleKuz’micheva, Galina, Irina Kaurova, Victor Rybakov und Vadim Podbel’skiy. „Crystallochemical Design of Huntite-Family Compounds“. Crystals 9, Nr. 2 (15.02.2019): 100. http://dx.doi.org/10.3390/cryst9020100.
Der volle Inhalt der QuelleQiu, Qi-Ming, und Guo-Yu Yang. „From [B6O13]8− to [GaB5O13]8− to [Ga{B5O9(OH)}{BO(OH)2}]2−: synthesis, structure and nonlinear optical properties of new metal borates“. CrystEngComm 23, Nr. 30 (2021): 5200–5207. http://dx.doi.org/10.1039/d1ce00719j.
Der volle Inhalt der QuelleKuz’min, N. N., K. N. Boldyrev, N. I. Leonyuk, S. Yu Stefanovich und M. N. Popova. „Luminescence and Nonlinear Optical Properties of Borates LnGa3(BO3)4 (Ln = Nd, Sm, Tb, Er, Dy, or Ho)“. Optics and Spectroscopy 127, Nr. 1 (Juli 2019): 107–12. http://dx.doi.org/10.1134/s0030400x19070154.
Der volle Inhalt der QuelleJiang, Xingxing, Siyang Luo, Lei Kang, Pifu Gong, Hongwei Huang, Shichao Wang, Zheshuai Lin und Chuangtian Chen. „First-Principles Evaluation of the Alkali and/or Alkaline Earth Beryllium Borates in Deep Ultraviolet Nonlinear Optical Applications“. ACS Photonics 2, Nr. 8 (07.08.2015): 1183–91. http://dx.doi.org/10.1021/acsphotonics.5b00248.
Der volle Inhalt der QuelleDing, Fenghua, Matthew L. Nisbet, Weiguo Zhang, P. Shiv Halasyamani, Liyuan Chai und Kenneth R. Poeppelmeier. „Why Some Noncentrosymmetric Borates Do Not Make Good Nonlinear Optical Materials: A Case Study with K3B5O8(OH)2“. Inorganic Chemistry 57, Nr. 18 (31.08.2018): 11801–8. http://dx.doi.org/10.1021/acs.inorgchem.8b01965.
Der volle Inhalt der QuelleBubnova, Rimma, Sergey Volkov, Barbara Albert und Stanislav Filatov. „Borates—Crystal Structures of Prospective Nonlinear Optical Materials: High Anisotropy of the Thermal Expansion Caused by Anharmonic Atomic Vibrations“. Crystals 7, Nr. 3 (22.03.2017): 93. http://dx.doi.org/10.3390/cryst7030093.
Der volle Inhalt der QuelleAtuchin, V. V., B. G. Bazarov, T. A. Gavrilova, V. G. Grossman, M. S. Molokeev und Zh G. Bazarova. „ChemInform Abstract: Preparation and Structural Properties of Nonlinear Optical Borates K2(1-x)Rb2xAl2B2O7, 0 < x < 0.75.“ ChemInform 43, Nr. 14 (08.03.2012): no. http://dx.doi.org/10.1002/chin.201214013.
Der volle Inhalt der QuelleWang, Shuao, Evgeny V. Alekseev, Jie Ling, Guokui Liu, Wulf Depmeier und Thomas E. Albrecht-Schmitt. „Polarity and Chirality in Uranyl Borates: Insights into Understanding the Vitrification of Nuclear Waste and the Development of Nonlinear Optical Materials“. Chemistry of Materials 22, Nr. 6 (23.03.2010): 2155–63. http://dx.doi.org/10.1021/cm9037796.
Der volle Inhalt der QuelleTopnikova, Anastasiia, Elena Belokoneva, Olga Dimitrova, Anatoliy Volkov und Sergey Stefanovich. „New borates with similar structures and different properties – acentric nonlinear optical KGd[B6O10(OH)2] and centrosymmetric KHo[B6O10(OH)2]“. Acta Crystallographica Section A Foundations and Advances 74, a2 (22.08.2018): e234-e234. http://dx.doi.org/10.1107/s2053273318091647.
Der volle Inhalt der QuelleBelokoneva, E. L., A. P. Topnikova, S. Yu Stefanovich, E. A. Dobretsova, A. S. Volkov und O. V. Dimitrova. „New isoformula borates with similar structures and different properties – Acentric nonlinear optical KGd[B6O10(OH)2] and centrosymmetric KHo[B6O10(OH)2]“. Solid State Sciences 46 (August 2015): 43–48. http://dx.doi.org/10.1016/j.solidstatesciences.2015.05.012.
Der volle Inhalt der QuelleWang, Shuao, Evgeny V. Alekseev, Jie Ling, Guokui Liu, Wulf Depmeier und Thomas E. Albrecht-Schmitt. „ChemInform Abstract: Polarity and Chirality in Uranyl Borates: Insights into Understanding the Vitrification of Nuclear Waste and the Development of Nonlinear Optical Materials.“ ChemInform 41, Nr. 33 (24.07.2010): no. http://dx.doi.org/10.1002/chin.201033019.
Der volle Inhalt der QuelleCheng, Lin, Qi Wei, Han-Qing Wu, Liu-Jiang Zhou und Guo-Yu Yang. „Ba3M2[B3O6(OH)]2[B4O7(OH)2] (M=Al, Ga): Two Novel UV Nonlinear Optical Metal Borates Containing Two Types of Oxoboron Clusters“. Chemistry - A European Journal 19, Nr. 52 (22.11.2013): 17662–67. http://dx.doi.org/10.1002/chem.201303088.
Der volle Inhalt der QuelleKosyl, Katarzyna M., Wojciech Paszkowicz, Roman Minikayev, Alexey N. Shekhovtsov, Miron B. Kosmyna, Maciej Chrunik und Andrew N. Fitch. „Site-occupancy scheme in disordered Ca3RE2(BO3)4: a dependence on rare-earth (RE) ionic radius“. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 77, Nr. 3 (07.05.2021): 339–46. http://dx.doi.org/10.1107/s2052520621002328.
Der volle Inhalt der QuelleBelokoneva, E. L., A. P. Topnikova, S. Yu Stefanovich, E. A. Dobretsova, A. S. Volkov und O. V. Dimitrova. „ChemInform Abstract: New Isoformula Borates with Similar Structures and Different Properties - Acentric Nonlinear Optical KGd[B6O10(OH)2] and Centrosymmetric KHo[B6O10(OH)2].“ ChemInform 46, Nr. 36 (20.08.2015): no. http://dx.doi.org/10.1002/chin.201536013.
Der volle Inhalt der QuelleCheng, Lin, Qi Wei, Han-Qing Wu, Liu-Jiang Zhou und Guo-Yu Yang. „ChemInform Abstract: Ba3M2[B3O6(OH)]2[B4O7(OH)2] (M: Al, Ga): Two Novel UV Nonlinear Optical Metal Borates Containing Two Types of Oxoboron Clusters.“ ChemInform 45, Nr. 14 (21.03.2014): no. http://dx.doi.org/10.1002/chin.201414006.
Der volle Inhalt der QuelleBelokoneva, Elena L., Sergej Yu Stefanovich und Olga V. Dimitrova. „New nonlinear optical potassium iodate K[IO3] and borates K3[B6O10]Br, KTa[B4O6(OH)4](OH)2·1.33H2O—Synthesis, structures and relation to the properties“. Journal of Solid State Chemistry 195 (November 2012): 79–85. http://dx.doi.org/10.1016/j.jssc.2012.01.036.
Der volle Inhalt der QuelleКовтунец, Евгений Викторович, Алексей Карпович Субанаков und Баир Гармаевич Базаров. „Синтез, структура и люминесцентные свойства нового двойного бората K3Eu3B4O12“. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, Nr. 2 (25.06.2020): 219–24. http://dx.doi.org/10.17308/kcmf.2020.22/2823.
Der volle Inhalt der QuelleBelokoneva, Elena L., Sergej Yu Stefanovich und Olga V. Dimitrova. „ChemInform Abstract: New Nonlinear Optical Potassium Iodate K[IO3] and Borates K3[B6O10]Br, KTa[B4O6(OH)4] (OH)2·1.33H2O - Synthesis, Structures and Relation to the Properties.“ ChemInform 43, Nr. 52 (18.12.2012): no. http://dx.doi.org/10.1002/chin.201252012.
Der volle Inhalt der QuelleArun Kumar, R. „Borate Crystals for Nonlinear Optical and Laser Applications: A Review“. Journal of Chemistry 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/154862.
Der volle Inhalt der QuelleRodrigo G. dos Santos, Rodrigo G. dos Santos, Lauro J. Q. Maia Lauro J. Q. Maia, Cid B. de Araújo Cid B. de Araújo und Leonardo de S. Menezes Leonardo de S. Menezes. „Nonlinear optical characterization of single β-barium-borate nanocrystals using second-harmonic confocal microscopy“. Chinese Optics Letters 16, Nr. 4 (2018): 041902. http://dx.doi.org/10.3788/col201816.041902.
Der volle Inhalt der QuelleSASAKI, TAKATOMO, YUSUKE MORI und MASASHI YOSHIMURA. „DEVELOPMENT OF NEW NLO BORATE CRYSTALS“. Journal of Nonlinear Optical Physics & Materials 10, Nr. 02 (Juni 2001): 249–63. http://dx.doi.org/10.1142/s0218863501000589.
Der volle Inhalt der QuelleBecker, Petra. „Borate Materials in Nonlinear Optics“. Advanced Materials 10, Nr. 13 (September 1998): 979–92. http://dx.doi.org/10.1002/(sici)1521-4095(199809)10:13<979::aid-adma979>3.0.co;2-n.
Der volle Inhalt der QuelleB Harde, Gajanan. „Measurements of Nonlinear Absorption and Refraction Coefficients of Pure and Nd Doped Calcium Lanthanum Borate Glasses“. International Journal of Science and Research (IJSR) 12, Nr. 4 (05.04.2023): 1317–20. http://dx.doi.org/10.21275/sr23415161529.
Der volle Inhalt der QuelleXue, D., K. Betzler, H. Hesse und D. Lammers. „Nonlinear optical properties of borate crystals“. Solid State Communications 114, Nr. 1 (März 2000): 21–25. http://dx.doi.org/10.1016/s0038-1098(99)00579-7.
Der volle Inhalt der Quelle