Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Noncommutative rings.

Zeitschriftenartikel zum Thema „Noncommutative rings“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Noncommutative rings" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Buckley, S., und D. MacHale. „Noncommutative Anticommutative Rings“. Irish Mathematical Society Bulletin 0018 (1987): 55–57. http://dx.doi.org/10.33232/bims.0018.55.57.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cohn, P. M. „NONCOMMUTATIVE NOETHERIAN RINGS“. Bulletin of the London Mathematical Society 20, Nr. 6 (November 1988): 627–29. http://dx.doi.org/10.1112/blms/20.6.627.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

KAUCIKAS, ALGIRDAS, und ROBERT WISBAUER. „NONCOMMUTATIVE HILBERT RINGS“. Journal of Algebra and Its Applications 03, Nr. 04 (Dezember 2004): 437–43. http://dx.doi.org/10.1142/s0219498804000964.

Der volle Inhalt der Quelle
Annotation:
Commutative rings in which every prime ideal is the intersection of maximal ideals are called Hilbert (or Jacobson) rings. This notion was extended to noncommutative rings in two different ways by the requirement that prime ideals are the intersection of maximal or of maximal left ideals, respectively. Here we propose to define noncommutative Hilbert rings by the property that strongly prime ideals are the intersection of maximal ideals. Unlike for the other definitions, these rings can be characterized by a contraction property: R is a Hilbert ring if and only if for all n∈ℕ every maximal ideal [Formula: see text] contracts to a maximal ideal of R. This definition is also equivalent to [Formula: see text] being finitely generated as an [Formula: see text]-module, i.e., a liberal extension. This gives a natural form of a noncommutative Hilbert's Nullstellensatz. The class of Hilbert rings is closed under finite polynomial extensions and under integral extensions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Alajbegovic̀, Jusuf H., und Nikolai I. Dubrovin. „Noncommutative prüfer rings“. Journal of Algebra 135, Nr. 1 (November 1990): 165–76. http://dx.doi.org/10.1016/0021-8693(90)90155-h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dubrovin, N. I. „NONCOMMUTATIVE PRÜFER RINGS“. Mathematics of the USSR-Sbornik 74, Nr. 1 (28.02.1993): 1–8. http://dx.doi.org/10.1070/sm1993v074n01abeh003330.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wang, Jian, Yunxia Li und Jiangsheng Hu. „Noncommutative G-semihereditary rings“. Journal of Algebra and Its Applications 17, Nr. 01 (Januar 2018): 1850014. http://dx.doi.org/10.1142/s0219498818500147.

Der volle Inhalt der Quelle
Annotation:
In this paper, we introduce and study left (right) [Formula: see text]-semihereditary rings over any associative ring, and these rings are exactly [Formula: see text]-semihereditary rings defined by Mahdou and Tamekkante provided that [Formula: see text] is a commutative ring. Some new characterizations of left [Formula: see text]-semihereditary rings are given. Applications go in three directions. The first is to give a sufficient condition when a finitely presented right [Formula: see text]-module is Gorenstein flat if and only if it is Gorenstein projective provided that [Formula: see text] is left coherent. The second is to investigate the relationships between Gorenstein flat modules and direct limits of finitely presented Gorenstein projective modules. The third is to obtain some new characterizations of semihereditary rings, [Formula: see text]-[Formula: see text] rings and [Formula: see text] rings.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ghorbani, A., und M. Naji Esfahani. „On noncommutative FGC rings“. Journal of Algebra and Its Applications 14, Nr. 07 (24.04.2015): 1550109. http://dx.doi.org/10.1142/s0219498815501091.

Der volle Inhalt der Quelle
Annotation:
Many studies have been conducted to characterize commutative rings whose finitely generated modules are direct sums of cyclic modules (called FGC rings), however, the characterization of noncommutative FGC rings is still an open problem, even for duo rings. We study FGC rings in some special cases, it is shown that a local Noetherian ring R is FGC if and only if R is a principal ideal ring if and only if R is a uniserial ring, and if these assertions hold R is a duo ring. We characterize Noetherian duo FGC rings. In fact, it is shown that a duo ring R is a Noetherian left FGC ring if and only if R is a Noetherian right FGC ring, if and only if R is a principal ideal ring.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

MacKenzie, Kenneth W. „Polycyclic group rings and unique factorisation rings“. Glasgow Mathematical Journal 36, Nr. 2 (Mai 1994): 135–44. http://dx.doi.org/10.1017/s0017089500030676.

Der volle Inhalt der Quelle
Annotation:
The theory of unique factorisation in commutative rings has recently been extended to noncommutative Noetherian rings in several ways. Recall that an element x of a ring R is said to be normalif xR = Rx. We will say that an element p of a ring R is (completely) prime if p is a nonzero normal element of R and pR is a (completely) prime ideal. In [2], a Noetherian unique factorisation domain (or Noetherian UFD) is defined to be a Noetherian domain in which every nonzero prime ideal contains a completely prime element: this concept is generalised in [4], where a Noetherian unique factorisation ring(or Noetherian UFR) is defined as a prime Noetherian ring in which every nonzero prime ideal contains a nonzero prime element; note that it follows from the noncommutative version of the Principal Ideal Theorem that in a Noetherian UFR, if pis a prime element then the height of the prime ideal pR must be equal to 1. Surprisingly many classes of noncommutative Noetherian rings are known to be UFDs or UFRs: see [2] and [4] for details. This theory has recently been extended still further, to cover certain classes of non-Noetherian rings: see [3].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zabavskii, B. V. „Noncommutative elementary divisor rings“. Ukrainian Mathematical Journal 39, Nr. 4 (1988): 349–53. http://dx.doi.org/10.1007/bf01060766.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gatalevich, A. I., und B. V. Zabavs'kii. „Noncommutative elementary divisor rings“. Journal of Mathematical Sciences 96, Nr. 2 (August 1999): 3013–16. http://dx.doi.org/10.1007/bf02169697.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

CHEN, WEIXING, und WENTING TONG. „ON NONCOMMUTATIVE VNL-RINGS AND GVNL-RINGS“. Glasgow Mathematical Journal 48, Nr. 01 (24.03.2006): 11. http://dx.doi.org/10.1017/s0017089505002806.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Reyes, Armando, und Héctor Suárez. „Skew Poincaré–Birkhoff–Witt extensions over weak compatible rings“. Journal of Algebra and Its Applications 19, Nr. 12 (18.11.2019): 2050225. http://dx.doi.org/10.1142/s0219498820502254.

Der volle Inhalt der Quelle
Annotation:
In this paper, we introduce weak [Formula: see text]-compatible rings and study skew Poincaré–Birkhoff–Witt extensions over these rings. We characterize the weak notion of compatibility for several noncommutative rings appearing in noncommutative algebraic geometry and some quantum algebras of theoretical physics. As a consequence of our treatment, we unify and extend results in the literature about Ore extensions and skew PBW extensions over compatible rings.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Bell, Howard E., und Abraham A. Klein. „Noncommutativity and noncentral zero divisors“. International Journal of Mathematics and Mathematical Sciences 22, Nr. 1 (1999): 67–74. http://dx.doi.org/10.1155/s0161171299220674.

Der volle Inhalt der Quelle
Annotation:
LetRbe a ring,Zits center, andDthe set of zero divisors. For finite noncommutative rings, it is known thatD\Z≠∅. We investigate the size of|D\Z|in this case and, also, in the case of infinite noncommutative rings withD\Z≠∅.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Zhou, Chaoyuan. „Acyclic Complexes and Graded Algebras“. Mathematics 11, Nr. 14 (19.07.2023): 3167. http://dx.doi.org/10.3390/math11143167.

Der volle Inhalt der Quelle
Annotation:
We already know that the noncommutative N-graded Noetherian algebras resemble commutative local Noetherian rings in many respects. We also know that commutative rings have the important property that every minimal acyclic complex of finitely generated graded free modules is totally acyclic, and we want to generalize such properties to noncommutative N-graded Noetherian algebra. By generalizing the conclusions about commutative rings and combining what we already know about noncommutative graded algebras, we identify a class of noncommutative graded algebras with the property that every minimal acyclic complex of finitely generated graded free modules is totally acyclic. We also discuss how the relationship between AS–Gorenstein algebras and AS–Cohen–Macaulay algebras admits a balanced dualizing complex. We show that AS–Gorenstein algebras and AS–Cohen–Macaulay algebras with a balanced dualizing complex belong to this algebra.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Nath, Rajat Kanti, Monalisha Sharma, Parama Dutta und Yilun Shang. „On r-Noncommuting Graph of Finite Rings“. Axioms 10, Nr. 3 (19.09.2021): 233. http://dx.doi.org/10.3390/axioms10030233.

Der volle Inhalt der Quelle
Annotation:
Let R be a finite ring and r∈R. The r-noncommuting graph of R, denoted by ΓRr, is a simple undirected graph whose vertex set is R and two vertices x and y are adjacent if and only if [x,y]≠r and [x,y]≠−r. In this paper, we obtain expressions for vertex degrees and show that ΓRr is neither a regular graph nor a lollipop graph if R is noncommutative. We characterize finite noncommutative rings such that ΓRr is a tree, in particular a star graph. It is also shown that ΓR1r and ΓR2ψ(r) are isomorphic if R1 and R2 are two isoclinic rings with isoclinism (ϕ,ψ). Further, we consider the induced subgraph ΔRr of ΓRr (induced by the non-central elements of R) and obtain results on clique number and diameter of ΔRr along with certain characterizations of finite noncommutative rings such that ΔRr is n-regular for some positive integer n. As applications of our results, we characterize certain finite noncommutative rings such that their noncommuting graphs are n-regular for n≤6.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Li, Bingjun. „STRONGLY CLEAN MATRIX RINGS OVER NONCOMMUTATIVE LOCAL RINGS“. Bulletin of the Korean Mathematical Society 46, Nr. 1 (31.01.2009): 71–78. http://dx.doi.org/10.4134/bkms.2009.46.1.071.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Sahai, Meena, und Sheere Farhat Ansari. „Lie centrally metabelian group rings over noncommutative rings“. Communications in Algebra 47, Nr. 11 (11.04.2019): 4729–39. http://dx.doi.org/10.1080/00927872.2019.1593428.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Formanek, Edward. „Book Review: Noncommutative Noetherian rings“. Bulletin of the American Mathematical Society 23, Nr. 2 (01.10.1990): 579–83. http://dx.doi.org/10.1090/s0273-0979-1990-15988-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Çeken, S., M. Alkan und P. F. Smith. „Second Modules Over Noncommutative Rings“. Communications in Algebra 41, Nr. 1 (31.01.2013): 83–98. http://dx.doi.org/10.1080/00927872.2011.623026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Mialebama Bouesso, André Saint Eudes, und Djiby Sow. „Noncommutative Gröbner Bases over Rings“. Communications in Algebra 43, Nr. 2 (25.08.2014): 541–57. http://dx.doi.org/10.1080/00927872.2012.738340.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Bailey, Abigail C., und John A. Beachy. „On noncommutative piecewise Noetherian rings“. Communications in Algebra 45, Nr. 6 (07.10.2016): 2662–72. http://dx.doi.org/10.1080/00927872.2016.1233232.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Yekutieli, Amnon, und James J. Zhang. „Residue complexes over noncommutative rings“. Journal of Algebra 259, Nr. 2 (Januar 2003): 451–93. http://dx.doi.org/10.1016/s0021-8693(02)00579-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Tuganbaev, A. A. „Comultiplication Modules over Noncommutative Rings“. Journal of Mathematical Sciences 191, Nr. 5 (17.05.2013): 743–47. http://dx.doi.org/10.1007/s10958-013-1357-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Lunts, V. A., und A. L. Rosenberg. „Differential operators on noncommutative rings“. Selecta Mathematica 3, Nr. 3 (September 1997): 335–59. http://dx.doi.org/10.1007/s000290050014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Gr�ter, Joachim. „On noncommutative Pr�fer rings“. Archiv der Mathematik 46, Nr. 5 (Mai 1986): 402–7. http://dx.doi.org/10.1007/bf01210779.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Johnson, Keith. „$P$-orderings of noncommutative rings“. Proceedings of the American Mathematical Society 143, Nr. 8 (01.04.2015): 3265–79. http://dx.doi.org/10.1090/s0002-9939-2015-12377-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Bell, Howard E., und Abraham A. Klein. „Extremely noncommutative elements in rings“. Monatshefte für Mathematik 153, Nr. 1 (12.10.2007): 19–24. http://dx.doi.org/10.1007/s00605-007-0505-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Annin, Scott. „Attached primes over noncommutative rings“. Journal of Pure and Applied Algebra 212, Nr. 3 (März 2008): 510–21. http://dx.doi.org/10.1016/j.jpaa.2007.05.024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Wauters, P., und E. Jespers. „Examples Of noncommutative krull rings“. Communications in Algebra 14, Nr. 5 (Januar 1986): 819–32. http://dx.doi.org/10.1080/00927878608823338.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Quinn, Declan. „Integral extensions of noncommutative rings“. Israel Journal of Mathematics 73, Nr. 1 (Februar 1991): 113–21. http://dx.doi.org/10.1007/bf02773430.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Dobbs, David E., und Noômen Jarboui. „Normal pairs of noncommutative rings“. Ricerche di Matematica 69, Nr. 1 (11.06.2019): 95–109. http://dx.doi.org/10.1007/s11587-019-00450-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Derr, J. B., G. F. Orr und Paul S. Peck. „Noncommutative rings of order p4“. Journal of Pure and Applied Algebra 97, Nr. 2 (November 1994): 109–16. http://dx.doi.org/10.1016/0022-4049(94)00015-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Jørgensen, Peter. „Gorenstein homomorphisms of noncommutative rings“. Journal of Algebra 211, Nr. 1 (Januar 1999): 240–67. http://dx.doi.org/10.1006/jabr.1998.7608.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Wu, Q. S., und J. J. Zhang. „Homological Identities for Noncommutative Rings“. Journal of Algebra 242, Nr. 2 (August 2001): 516–35. http://dx.doi.org/10.1006/jabr.2001.8817.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Markov, Viktor T., und Askar A. Tuganbaev. „Centrally essential rings“. Discrete Mathematics and Applications 29, Nr. 3 (26.06.2019): 189–94. http://dx.doi.org/10.1515/dma-2019-0017.

Der volle Inhalt der Quelle
Annotation:
Abstract A centrally essential ring is a ring which is an essential extension of its center (we consider the ring as a module over its center). We give several examples of noncommutative centrally essential rings and describe some properties of centrally essential rings.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Reddy Y., Madana Mohana. „Some Studies on Commutative Rings in Commutative Algebra“. Tuijin Jishu/Journal of Propulsion Technology 44, Nr. 4 (16.10.2023): 1221–26. http://dx.doi.org/10.52783/tjjpt.v44.i4.1002.

Der volle Inhalt der Quelle
Annotation:
In ring theory, a branch of abstract algebra, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of noncommutative ring where multiplication is not required to be commutative.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Coutinho, S. C., und J. C. McConnell. „The Quest for Quotient Rings (Of Noncommutative Noetherian Rings)“. American Mathematical Monthly 110, Nr. 4 (April 2003): 298. http://dx.doi.org/10.2307/3647879.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Coutinho, S. C., und J. C. McConnell. „The Quest for Quotient Rings (of Noncommutative Noetherian Rings)“. American Mathematical Monthly 110, Nr. 4 (April 2003): 298–313. http://dx.doi.org/10.1080/00029890.2003.11919966.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Leuschke, Graham J. „Endomorphism Rings of Finite Global Dimension“. Canadian Journal of Mathematics 59, Nr. 2 (01.04.2007): 332–42. http://dx.doi.org/10.4153/cjm-2007-014-1.

Der volle Inhalt der Quelle
Annotation:
AbstractFor a commutative local ring R, consider (noncommutative) R-algebras Λ of the form Λ = EndR(M) where M is a reflexive R-module with nonzero free direct summand. Such algebras Λ of finite global dimension can be viewed as potential substitutes for, or analogues of, a resolution of singularities of Spec R. For example, Van den Bergh has shown that a three-dimensional Gorenstein normal ℂ-algebra with isolated terminal singularities has a crepant resolution of singularities if and only if it has such an algebra Λ with finite global dimension and which is maximal Cohen–Macaulay over R (a “noncommutative crepant resolution of singularities”). We produce algebras Λ = EndR(M) having finite global dimension in two contexts: when R is a reduced one-dimensional complete local ring, or when R is a Cohen–Macaulay local ring of finite Cohen–Macaulay type. If in the latter case R is Gorenstein, then the construction gives a noncommutative crepant resolution of singularities in the sense of Van den Bergh.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Sánchez, Javier. „Obtaining free group algebras in division rings generated by group graded rings“. Journal of Algebra and Its Applications 17, Nr. 10 (Oktober 2018): 1850194. http://dx.doi.org/10.1142/s0219498818501943.

Der volle Inhalt der Quelle
Annotation:
We give sufficient conditions for the existence of noncommutative free group algebras in division rings generated by group graded rings. We also relate our conclusions to already existing results on the subject improving some of them.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Small, Lance, und T. Y. Lam. „A First Course in Noncommutative Rings.“ American Mathematical Monthly 100, Nr. 7 (August 1993): 698. http://dx.doi.org/10.2307/2323906.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Denton, Brian, und T. Y. Lam. „A First Course in Noncommutative Rings“. Mathematical Gazette 86, Nr. 505 (März 2002): 177. http://dx.doi.org/10.2307/3621626.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Huh, Chan, Nam-Kyun Kim und Yang Lee. „AN ANDERSON'S THEOREM ON NONCOMMUTATIVE RINGS“. Bulletin of the Korean Mathematical Society 45, Nr. 4 (30.11.2008): 797–800. http://dx.doi.org/10.4134/bkms.2008.45.4.797.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Kim, Byung-Ok, und Yang Lee. „MINIMAL NONCOMMUTATIVE REVERSIBLE AND REFLEXIVE RINGS“. Bulletin of the Korean Mathematical Society 48, Nr. 3 (31.05.2011): 611–16. http://dx.doi.org/10.4134/bkms.2011.48.3.611.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Hajarnavis, C. R. „AN INTRODUCTION TO NONCOMMUTATIVE NOETHERIAN RINGS“. Bulletin of the London Mathematical Society 23, Nr. 1 (Januar 1991): 91–93. http://dx.doi.org/10.1112/blms/23.1.91.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Cimprič, Jaka. „HIGHER PRODUCT LEVELS OF NONCOMMUTATIVE RINGS“. Communications in Algebra 29, Nr. 1 (21.03.2001): 193–200. http://dx.doi.org/10.1081/agb-100000794.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Komatsu, Hiroaki. „QUASI-SEPARABLE EXTENSIONS OF NONCOMMUTATIVE RINGS“. Communications in Algebra 29, Nr. 3 (28.02.2001): 1011–19. http://dx.doi.org/10.1081/agb-100001663.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

CHERCHEM, AHMED, TAREK GARICI und ABDELKADER NECER. „LINEAR RECURRING SEQUENCES OVER NONCOMMUTATIVE RINGS“. Journal of Algebra and Its Applications 11, Nr. 02 (April 2012): 1250040. http://dx.doi.org/10.1142/s0219498811005646.

Der volle Inhalt der Quelle
Annotation:
Contrary to the commutative case, the set of linear recurring sequences with values in a module over a noncommutative ring is no more a module for the usual operations. We show the stability of these operations when the ring is a matrix ring or a division ring. In the case of a finite dimensional division ring over its center, we give an algorithm for the determination of a recurrence relation for the sum of two linear recurring sequences.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Dosi, Anar. „Noncommutative Localizations of Lie-Complete Rings“. Communications in Algebra 44, Nr. 11 (16.06.2016): 4892–944. http://dx.doi.org/10.1080/00927872.2015.1130135.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Golod, E. S. „On noncommutative Gröbner bases over rings“. Journal of Mathematical Sciences 140, Nr. 2 (Januar 2007): 239–42. http://dx.doi.org/10.1007/s10958-007-0420-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie