Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Noncommutative algebras“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Noncommutative algebras" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Noncommutative algebras"
Arutyunov, A. A. „Derivation Algebra in Noncommutative Group Algebras“. Proceedings of the Steklov Institute of Mathematics 308, Nr. 1 (Januar 2020): 22–34. http://dx.doi.org/10.1134/s0081543820010022.
Der volle Inhalt der QuelleZhou, Chaoyuan. „Acyclic Complexes and Graded Algebras“. Mathematics 11, Nr. 14 (19.07.2023): 3167. http://dx.doi.org/10.3390/math11143167.
Der volle Inhalt der QuelleAbel, Mati, und Krzysztof Jarosz. „Noncommutative uniform algebras“. Studia Mathematica 162, Nr. 3 (2004): 213–18. http://dx.doi.org/10.4064/sm162-3-2.
Der volle Inhalt der QuelleXu, Ping. „Noncommutative Poisson Algebras“. American Journal of Mathematics 116, Nr. 1 (Februar 1994): 101. http://dx.doi.org/10.2307/2374983.
Der volle Inhalt der QuelleRoh, Jaiok, und Ick-Soon Chang. „Approximate Derivations with the Radical Ranges of Noncommutative Banach Algebras“. Abstract and Applied Analysis 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/594075.
Der volle Inhalt der QuelleErcolessi, Elisa, Giovanni Landi und Paulo Teotonio-Sobrinho. „Noncommutative Lattices and the Algebras of Their Continuous Functions“. Reviews in Mathematical Physics 10, Nr. 04 (Mai 1998): 439–66. http://dx.doi.org/10.1142/s0129055x98000148.
Der volle Inhalt der QuelleFerreira, Vitor O., Jairo Z. Gonçalves und Javier Sánchez. „Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras“. International Journal of Algebra and Computation 25, Nr. 06 (September 2015): 1075–106. http://dx.doi.org/10.1142/s0218196715500319.
Der volle Inhalt der QuelleLiang, Shi-Dong, und Matthew J. Lake. „An Introduction to Noncommutative Physics“. Physics 5, Nr. 2 (18.04.2023): 436–60. http://dx.doi.org/10.3390/physics5020031.
Der volle Inhalt der QuelleMahanta, Snigdhayan. „Noncommutative stable homotopy and stable infinity categories“. Journal of Topology and Analysis 07, Nr. 01 (02.12.2014): 135–65. http://dx.doi.org/10.1142/s1793525315500077.
Der volle Inhalt der QuelleLETZTER, EDWARD S. „NONCOMMUTATIVE IMAGES OF COMMUTATIVE SPECTRA“. Journal of Algebra and Its Applications 07, Nr. 05 (Oktober 2008): 535–52. http://dx.doi.org/10.1142/s0219498808002941.
Der volle Inhalt der QuelleDissertationen zum Thema "Noncommutative algebras"
Rennie, Adam Charles. „Noncommutative spin geometry“. Title page, contents and introduction only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phr4163.pdf.
Der volle Inhalt der QuelleHartman, Gregory Neil. „Graphs and Noncommutative Koszul Algebras“. Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27156.
Der volle Inhalt der QuellePh. D.
Schoenecker, Kevin J. „An infinite family of anticommutative algebras with a cubic form“. Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1187185559.
Der volle Inhalt der QuelleRussell, Ewan. „Prime ideals in quantum algebras“. Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3450.
Der volle Inhalt der QuellePhan, Christopher Lee 1980. „Koszul and generalized Koszul properties for noncommutative graded algebras“. Thesis, University of Oregon, 2009. http://hdl.handle.net/1794/10367.
Der volle Inhalt der QuelleWe investigate some homological properties of graded algebras. If A is an R -algebra, then E (A) := Ext A ( R, R ) is an R-algebra under the cup product and is called the Yoneda algebra. (In most cases, we assume R is a field.) A well-known and widely-studied condition on E(A) is the Koszul property. We study a class of deformations of Koszul algebras that arises from the study of equivariant cohomology and algebraic groups and show that under certain circumstances these deformations are Poincaré-Birkhoff-Witt deformations. Some of our results involve the [Special characters omitted] property, recently introduced by Cassidy and Shelton, which is a generalization of the Koszul property. While a Koszul algebra must be quadratic, a [Special characters omitted] algebra may have its ideal of relations generated in different degrees. We study the structure of the Yoneda algebra corresponding to a monomial [Special characters omitted.] algebra and provide an example of a monomial [Special characters omitted] algebra whose Yoneda algebra is not also [Special characters omitted]. This example illustrates the difficulty of finding a [Special characters omitted] analogue of the classical theory of Koszul duality. It is well-known that Poincaré-Birkhoff-Witt algebras are Koszul. We find a [Special characters omitted] analogue of this theory. If V is a finite-dimensional vector space with an ordered basis, and A := [Special characters omitted] (V)/I is a connected-graded algebra, we can place a filtration F on A as well as E (A). We show there is a bigraded algebra embedding Λ: gr F E (A) [Special characters omitted] E (gr F A ). If I has a Gröbner basis meeting certain conditions and gr F A is [Special characters omitted], then Λ can be used to show that A is also [Special characters omitted]. This dissertation contains both previously published and co-authored materials.
Committee in charge: Brad Shelton, Chairperson, Mathematics; Victor Ostrik, Member, Mathematics; Christopher Phillips, Member, Mathematics; Sergey Yuzvinsky, Member, Mathematics; Van Kolpin, Outside Member, Economics
Meyer, Jonas R. „Noncommutative Hardy algebras, multipliers, and quotients“. Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/712.
Der volle Inhalt der QuelleUhl, Christine. „Quantum Drinfeld Hecke Algebras“. Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc862764/.
Der volle Inhalt der QuelleZhao, Xiangui. „Groebner-Shirshov bases in some noncommutative algebras“. London Mathematical Society, 2014. http://hdl.handle.net/1993/24315.
Der volle Inhalt der QuelleOblomkov, Alexei. „Double affine Hecke algebras and noncommutative geometry“. Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/31165.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 93-96).
In the first part we study Double Affine Hecke algebra of type An-1 which is important tool in the theory of orthogonal polynomials. We prove that the spherical subalgebra eH(t, 1)e of the Double Affine Hecke algebra H(t, 1) of type An-1 is an integral Cohen-Macaulay algebra isomorphic to the center Z of H(t, 1), and H(t, 1)e is a Cohen-Macaulay eH(t, 1)e-module with the property H(t, 1) = EndeH(t,tl)(H(t, 1)e). This implies the classification of the finite dimensional representations of the algebras. In the second part we study the algebraic properties of the five-parameter family H(tl, t2, t3, t4; q) of double affine Hecke algebras of type CVC1, which control Askey- Wilson polynomials. We show that if q = 1, then the spectrum of the center of H is an affine cubic surface C, obtained from a projective one by removing a triangle consisting of smooth points. Moreover, any such surface is obtained as the spectrum of the center of H for some values of parameters. We prove that the only fiat de- formations of H come from variations of parameters. This explains from the point of view of noncommutative geometry why one cannot add more parameters into the theory of Askey-Wilson polynomials. We also prove several results on the universality of the five-parameter family H(tl, t2, t3, t4; q) of algebras.
by Alexei Oblomkov.
Ph.D.
Gohm, Rolf. „Noncommutative stationary processes /“. Berlin [u.a.] : Springer, 2004. http://www.loc.gov/catdir/enhancements/fy0813/2004103932-d.html.
Der volle Inhalt der QuelleBücher zum Thema "Noncommutative algebras"
Farb, Benson. Noncommutative algebra. New York: Springer-Verlag, 1993.
Den vollen Inhalt der Quelle findenMarubayashi, Hidetoshi. Prime Divisors and Noncommutative Valuation Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenKhalkhali, Masoud, und Guoliang Yu. Perspectives on noncommutative geometry. Providence, R.I: American Mathematical Society, 2011.
Den vollen Inhalt der Quelle findenSilva, Ana Cannas da. Geometric models for noncommutative algebras. Providence, R.I: American Mathematical Society, 1999.
Den vollen Inhalt der Quelle findenRosenberg, Alex. Noncommutative algebraic geometry and representations of quantized algebras. Dordrecht: Kluwer Academic Publishers, 1995.
Den vollen Inhalt der Quelle findenCuculescu, I. Noncommutative probability. Dordrecht: Kluwer Academic Publishers, 1994.
Den vollen Inhalt der Quelle findenRosenberg, Alexander L. Noncommutative Algebraic Geometry and Representations of Quantized Algebras. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2.
Der volle Inhalt der QuelleDiep, Do Ngoc. Methods of noncommutative geometry for group C*-algebras. Boca Raton: Chapman & Hall/CRC, 2000.
Den vollen Inhalt der Quelle findenBonfiglioli, Andrea. Topics in noncommutative algebra: The theorem of Campbell, Baker, Hausdorff and Dynkin. Heidelberg: Springer, 2012.
Den vollen Inhalt der Quelle findenDoran, Robert S., und Richard V. Kadison, Hrsg. Operator Algebras, Quantization, and Noncommutative Geometry. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/conm/365.
Der volle Inhalt der QuelleBuchteile zum Thema "Noncommutative algebras"
Cuculescu, I., und A. G. Oprea. „Jordan Algebras“. In Noncommutative Probability, 293–315. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8374-9_7.
Der volle Inhalt der QuelleArzumanian, Victor, und Suren Grigorian. „Noncommutative Uniform Algebras“. In Linear Operators in Function Spaces, 101–9. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-7250-8_5.
Der volle Inhalt der QuelleCuculescu, I., und A. G. Oprea. „Probability on von Neumann Algebras“. In Noncommutative Probability, 53–94. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8374-9_2.
Der volle Inhalt der QuelleRosenberg, Alexander L. „Noncommutative Affine Schemes“. In Noncommutative Algebraic Geometry and Representations of Quantized Algebras, 1–47. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2_1.
Der volle Inhalt der QuelleRosenberg, Alexander L. „Noncommutative Local Algebra“. In Noncommutative Algebraic Geometry and Representations of Quantized Algebras, 110–41. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2_3.
Der volle Inhalt der QuelleRosenberg, Alexander L. „Noncommutative Projective Spectrum“. In Noncommutative Algebraic Geometry and Representations of Quantized Algebras, 276–305. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2_7.
Der volle Inhalt der QuelleAschieri, Paolo. „Quantum Groups, Quantum Lie Algebras, and Twists“. In Noncommutative Spacetimes, 111–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89793-4_7.
Der volle Inhalt der QuelleBratteli, Ola. „Noncommutative vectorfields“. In Derivations, Dissipations and Group Actions on C*-algebras, 34–240. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0098820.
Der volle Inhalt der QuelleGracia-Bondía, José M., Joseph C. Várilly und Héctor Figueroa. „Kreimer-Connes-Moscovici Algebras“. In Elements of Noncommutative Geometry, 597–640. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0005-5_14.
Der volle Inhalt der QuelleVárilly, Joseph C. „The Interface of Noncommutative Geometry and Physics“. In Clifford Algebras, 227–42. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-2044-2_15.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Noncommutative algebras"
VÁRILLY, JOSEPH C. „HOPF ALGEBRAS IN NONCOMMUTATIVE GEOMETRY“. In Proceedings of the Summer School. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705068_0001.
Der volle Inhalt der QuelleSchauenburg, P. „Weak Hopf algebras and quantum groupoids“. In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-12.
Der volle Inhalt der QuelleKhalkhali, M., und B. Rangipour. „Cyclic cohomology of (extended) Hopf algebras“. In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-5.
Der volle Inhalt der QuelleGomez, X., und S. Majid. „Relating quantum and braided Lie algebras“. In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-6.
Der volle Inhalt der QuelleSzymański, Wojciech. „Quantum lens spaces and principal actions on graph C*-algebras“. In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-18.
Der volle Inhalt der QuelleMORI, IZURU. „NONCOMMUTATIVE PROJECTIVE SCHEMES AND POINT SCHEMES“. In Proceedings of the International Conference on Algebras, Modules and Rings. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774552_0014.
Der volle Inhalt der QuelleMajewski, Władysław A., und Marcin Marciniak. „On the structure of positive maps between matrix algebras“. In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-18.
Der volle Inhalt der QuelleWakui, Michihisa. „The coribbon structures of some finite dimensional braided Hopf algebras generated by 2×2-matrix coalgebras“. In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-20.
Der volle Inhalt der QuelleLONGO, ROBERTO. „OPERATOR ALGEBRAS AND NONCOMMUTATIVE GEOMETRIC ASPECTS IN CONFORMAL FIELD THEORY“. In XVIth International Congress on Mathematical Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814304634_0008.
Der volle Inhalt der QuelleFernández, David, und Luis Álvarez–cónsul. „Noncommutative bi-symplectic $\mathbb{N}Q$-algebras of weight 1“. In The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0019.
Der volle Inhalt der Quelle