Zeitschriftenartikel zum Thema „Nonadiabatic molecular dynamics“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Nonadiabatic molecular dynamics.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Nonadiabatic molecular dynamics" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Tully, John C. „Nonadiabatic molecular dynamics“. International Journal of Quantum Chemistry 40, S25 (1991): 299–309. http://dx.doi.org/10.1002/qua.560400830.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Richardson, Jeremy O., und Michael Thoss. „Communication: Nonadiabatic ring-polymer molecular dynamics“. Journal of Chemical Physics 139, Nr. 3 (21.07.2013): 031102. http://dx.doi.org/10.1063/1.4816124.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Curchod, Basile F. E., und Todd J. Martínez. „Ab Initio Nonadiabatic Quantum Molecular Dynamics“. Chemical Reviews 118, Nr. 7 (21.02.2018): 3305–36. http://dx.doi.org/10.1021/acs.chemrev.7b00423.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dou, Wenjie, und Joseph E. Subotnik. „Nonadiabatic Molecular Dynamics at Metal Surfaces“. Journal of Physical Chemistry A 124, Nr. 5 (09.01.2020): 757–71. http://dx.doi.org/10.1021/acs.jpca.9b10698.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

de Carvalho, Felipe, Marine Bouduban, Basile Curchod und Ivano Tavernelli. „Nonadiabatic Molecular Dynamics Based on Trajectories“. Entropy 16, Nr. 1 (27.12.2013): 62–85. http://dx.doi.org/10.3390/e16010062.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Nakamura, Hiroki, Shinkoh Nanbu, Yoshiaki Teranishi und Ayumi Ohta. „Development of semiclassical molecular dynamics simulation method“. Physical Chemistry Chemical Physics 18, Nr. 17 (2016): 11972–85. http://dx.doi.org/10.1039/c5cp07655b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhao, Mei-Yu, Qing-Tian Meng, Ting-Xian Xie, Ke-Li Han und Guo-Zhong He. „Nonadiabatic photodissociation dynamics“. International Journal of Quantum Chemistry 101, Nr. 2 (2004): 153–59. http://dx.doi.org/10.1002/qua.20221.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Szabla, Rafał, Robert W. Góra und Jiří Šponer. „Ultrafast excited-state dynamics of isocytosine“. Physical Chemistry Chemical Physics 18, Nr. 30 (2016): 20208–18. http://dx.doi.org/10.1039/c6cp01391k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Li Xiao-Ke und Feng Wei. „Quantum trajectory simulation for nonadiabatic molecular dynamics“. Acta Physica Sinica 66, Nr. 15 (2017): 153101. http://dx.doi.org/10.7498/aps.66.153101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Matsuoka, Takahide, und Kazuo Takatsuka. „Nonadiabatic electron wavepacket dynamics behind molecular autoionization“. Journal of Chemical Physics 148, Nr. 1 (03.01.2018): 014106. http://dx.doi.org/10.1063/1.5000293.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Coker, D. F., und L. Xiao. „Methods for molecular dynamics with nonadiabatic transitions“. Journal of Chemical Physics 102, Nr. 1 (Januar 1995): 496–510. http://dx.doi.org/10.1063/1.469428.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Runeson, Johan E., und Jeremy O. Richardson. „Spin-mapping approach for nonadiabatic molecular dynamics“. Journal of Chemical Physics 151, Nr. 4 (28.07.2019): 044119. http://dx.doi.org/10.1063/1.5100506.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Chen, Feng, Kuniyuki Miwa und Michael Galperin. „Current-Induced Forces for Nonadiabatic Molecular Dynamics“. Journal of Physical Chemistry A 123, Nr. 3 (24.10.2018): 693–701. http://dx.doi.org/10.1021/acs.jpca.8b09251.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Fedorov, Dmitry A., Stefan Seritan, B. Scott Fales, Todd J. Martínez und Benjamin G. Levine. „PySpawn: Software for Nonadiabatic Quantum Molecular Dynamics“. Journal of Chemical Theory and Computation 16, Nr. 9 (20.07.2020): 5485–98. http://dx.doi.org/10.1021/acs.jctc.0c00575.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Ibele, Lea M., und Basile F. E. Curchod. „A molecular perspective on Tully models for nonadiabatic dynamics“. Physical Chemistry Chemical Physics 22, Nr. 27 (2020): 15183–96. http://dx.doi.org/10.1039/d0cp01353f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Akimov, Alexey V. „Nonadiabatic Molecular Dynamics with Tight-Binding Fragment Molecular Orbitals“. Journal of Chemical Theory and Computation 12, Nr. 12 (Dezember 2016): 5719–36. http://dx.doi.org/10.1021/acs.jctc.6b00955.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Westermayr, Julia, Michael Gastegger, Maximilian F. S. J. Menger, Sebastian Mai, Leticia González und Philipp Marquetand. „Machine learning enables long time scale molecular photodynamics simulations“. Chemical Science 10, Nr. 35 (2019): 8100–8107. http://dx.doi.org/10.1039/c9sc01742a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Li, Wei, Yalan She, Andrey S. Vasenko und Oleg V. Prezhdo. „Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites“. Nanoscale 13, Nr. 23 (2021): 10239–65. http://dx.doi.org/10.1039/d1nr01990b.

Der volle Inhalt der Quelle
Annotation:
Atomistic details govern quantum dynamics of charge carriers in metal halide perovskites, which exhibit properties of solid state and molecular semiconductors, as revealed by time-domain density functional theory and nonadiabatic molecular dynamics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Seki, Yusuke, Toshiyuki Takayanagi und Motoyuki Shiga. „Photoexcited Ag ejection from a low-temperature He cluster: a simulation study by nonadiabatic Ehrenfest ring-polymer molecular dynamics“. Physical Chemistry Chemical Physics 19, Nr. 21 (2017): 13798–806. http://dx.doi.org/10.1039/c7cp00888k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Carlos Borin, Antonio, Sebastian Mai, Philipp Marquetand und Leticia González. „Ab initio molecular dynamics relaxation and intersystem crossing mechanisms of 5-azacytosine“. Physical Chemistry Chemical Physics 19, Nr. 8 (2017): 5888–94. http://dx.doi.org/10.1039/c6cp07919a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Mukherjee, Saikat, Dmitry A. Fedorov und Sergey A. Varganov. „Modeling Spin-Crossover Dynamics“. Annual Review of Physical Chemistry 72, Nr. 1 (20.04.2021): 515–40. http://dx.doi.org/10.1146/annurev-physchem-101419-012625.

Der volle Inhalt der Quelle
Annotation:
In this article, we review nonadiabatic molecular dynamics (NAMD) methods for modeling spin-crossover transitions. First, we discuss different representations of electronic states employed in the grid-based and direct NAMD simulations. The nature of interstate couplings in different representations is highlighted, with the main focus on nonadiabatic and spin-orbit couplings. Second, we describe three NAMD methods that have been used to simulate spin-crossover dynamics, including trajectory surface hopping, ab initio multiple spawning, and multiconfiguration time-dependent Hartree. Some aspects of employing different electronic structure methods to obtain information about potential energy surfaces and interstate couplings for NAMD simulations are also discussed. Third, representative applications of NAMD to spin crossovers in molecular systems of different sizes and complexities are highlighted. Finally, we pose several fundamental questions related to spin-dependent processes. These questions should be possible to address with future methodological developments in NAMD.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Sisto, Aaron, Clem Stross, Marc W. van der Kamp, Michael O’Connor, Simon McIntosh-Smith, Graham T. Johnson, Edward G. Hohenstein, Fred R. Manby, David R. Glowacki und Todd J. Martinez. „Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model“. Physical Chemistry Chemical Physics 19, Nr. 23 (2017): 14924–36. http://dx.doi.org/10.1039/c7cp00492c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Bennett, Kochise, Markus Kowalewski, Jérémy R. Rouxel und Shaul Mukamel. „Monitoring molecular nonadiabatic dynamics with femtosecond X-ray diffraction“. Proceedings of the National Academy of Sciences 115, Nr. 26 (11.06.2018): 6538–47. http://dx.doi.org/10.1073/pnas.1805335115.

Der volle Inhalt der Quelle
Annotation:
Ultrafast time-resolved X-ray scattering, made possible by free-electron laser sources, provides a wealth of information about electronic and nuclear dynamical processes in molecules. The technique provides stroboscopic snapshots of the time-dependent electronic charge density traditionally used in structure determination and reflects the interplay of elastic and inelastic processes, nonadiabatic dynamics, and electronic populations and coherences. The various contributions to ultrafast off-resonant diffraction from populations and coherences of molecules in crystals, in the gas phase, or from single molecules are surveyed for core-resonant and off-resonant diffraction. Single-molecule∝Nscaling and two-molecule∝N2scaling contributions, where N is the number of active molecules, are compared. Simulations are presented for the excited-state nonadiabatic dynamics of the electron harpooning at the avoided crossing in NaF. We show how a class of multiple diffraction signals from a single molecule can reveal charge-density fluctuations through multidimensional correlation functions of the charge density.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Hanasaki, Kota, Manabu Kanno, Thomas A. Niehaus und Hirohiko Kono. „An efficient approximate algorithm for nonadiabatic molecular dynamics“. Journal of Chemical Physics 149, Nr. 24 (28.12.2018): 244117. http://dx.doi.org/10.1063/1.5046757.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Stella, L., M. Meister, A. J. Fisher und A. P. Horsfield. „Robust nonadiabatic molecular dynamics for metals and insulators“. Journal of Chemical Physics 127, Nr. 21 (07.12.2007): 214104. http://dx.doi.org/10.1063/1.2801537.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Bittner, Eric R., und Peter J. Rossky. „Decoherent histories and nonadiabatic quantum molecular dynamics simulations“. Journal of Chemical Physics 107, Nr. 20 (22.11.1997): 8611–18. http://dx.doi.org/10.1063/1.475013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Lezius, M., V. Blanchet, D. M. Rayner, D. M. Villeneuve, Albert Stolow und Misha Yu Ivanov. „Nonadiabatic Multielectron Dynamics in Strong Field Molecular Ionization“. Physical Review Letters 86, Nr. 1 (01.01.2001): 51–54. http://dx.doi.org/10.1103/physrevlett.86.51.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Ramakrishna, S., und Tamar Seideman. „Dissipative dynamics of laser induced nonadiabatic molecular alignment“. Journal of Chemical Physics 124, Nr. 3 (21.01.2006): 034101. http://dx.doi.org/10.1063/1.2130708.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Bandrauk, André D., und T. Tung Nguyen‐Dang. „Molecular dynamics in intense fields. III. Nonadiabatic effects“. Journal of Chemical Physics 83, Nr. 6 (15.09.1985): 2840–50. http://dx.doi.org/10.1063/1.449234.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Nebgen, Ben, und Oleg V. Prezhdo. „Fragment Molecular Orbital Nonadiabatic Molecular Dynamics for Condensed Phase Systems“. Journal of Physical Chemistry A 120, Nr. 36 (September 2016): 7205–12. http://dx.doi.org/10.1021/acs.jpca.6b05607.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Wu, Xiaoyan, Baopi Liu, Thomas Frauenheim, Sergei Tretiak, ChiYung Yam und Yu Zhang. „Investigation of plasmon relaxation mechanisms using nonadiabatic molecular dynamics“. Journal of Chemical Physics 157, Nr. 21 (07.12.2022): 214201. http://dx.doi.org/10.1063/5.0127435.

Der volle Inhalt der Quelle
Annotation:
Hot carriers generated from the decay of plasmon excitation can be harvested to drive a wide range of physical or chemical processes. However, their generation efficiency is limited by the concomitant phonon-induced relaxation processes by which the energy in excited carriers is transformed into heat. However, simulations of dynamics of nanoscale clusters are challenging due to the computational complexity involved. Here, we adopt our newly developed Trajectory Surface Hopping (TSH) nonadiabatic molecular dynamics algorithm to simulate plasmon relaxation in Au20 clusters, taking the atomistic details into account. The electronic properties are treated within the Linear Response Time-Dependent Tight-binding Density Functional Theory (LR-TDDFTB) framework. The relaxation of plasmon due to coupling to phonon modes in Au20 beyond the Born–Oppenheimer approximation is described by the TSH algorithm. The numerically efficient LR-TDDFTB method allows us to address a dense manifold of excited states to ensure the inclusion of plasmon excitation. Starting from the photoexcited plasmon states in Au20 cluster, we find that the time constant for relaxation from plasmon excited states to the lowest excited states is about 2.7 ps, mainly resulting from a stepwise decay process caused by low-frequency phonons of the Au20 cluster. Furthermore, our simulations show that the lifetime of the phonon-induced plasmon dephasing process is ∼10.4 fs and that such a swift process can be attributed to the strong nonadiabatic effect in small clusters. Our simulations demonstrate a detailed description of the dynamic processes in nanoclusters, including plasmon excitation, hot carrier generation from plasmon excitation dephasing, and the subsequent phonon-induced relaxation process.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Lei, Yuli, Haibo Ma und Luis Vasquez. „Ab initio nonadiabatic dynamics of semiconductor materials via surface hopping method“. Chinese Journal of Chemical Physics 35, Nr. 1 (Februar 2022): 16–37. http://dx.doi.org/10.1063/1674-0068/cjcp2111247.

Der volle Inhalt der Quelle
Annotation:
Photoinduced carrier dynamic processes are without doubt the main driving force responsible for the efficient performance of semiconductor nano-materials in applications like photoconversion and photonics. Nevertheless, establishing theoretical insights into these processes is computationally challenging owing to the multiple factors involved in the processes, namely reaction rate, material surface area, material composition etc. Modelling of photoinduced carrier dynamic processes can be performed via nonadiabatic molecular dynamics (NA-MD) methods, which are methods specifically designed to solve the time-dependent Schrodinger equation with the inclusion of nonadiabatic couplings. Among NA-MD methods, surface hopping methods have been proven to be a mighty tool to mimic the competitive nonadiabatic processes in semiconductor nanomaterials, a worth noticing feature is its exceptional balance between accuracy and computational cost. Consequently, surface hopping is the method of choice for modelling ultrafast dynamics and more complex phenomena like charge separation in Janus transition metal dichalcogenides-based van der Waals heterojunction materials. Covering latest state-of-the-art numerical simulations along with experimental results in the field, this review aims to provide a basic understanding of the tight relation between semiconductor nanomaterials and the proper simulation of their properties via surface hopping methods. Special stress is put on emerging state-ot-the-art techniques. By highlighting the challenge imposed by new materials, we depict emerging creative approaches, including high-level electronic structure methods and NA-MD methods to model nonadiabatic systems with high complexity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Zeng, Huadong, Xiangyue Liu, Hong Zhang und Xinlu Cheng. „New theoretical insights into the photoinduced carrier transfer dynamics in WS2/WSe2 van der Waals heterostructures“. Physical Chemistry Chemical Physics 23, Nr. 1 (2021): 694–701. http://dx.doi.org/10.1039/d0cp04517a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Xu, Chao, Feng Long Gu und Chaoyuan Zhu. „Ultrafast intersystem crossing for nitrophenols: ab initio nonadiabatic molecular dynamics simulation“. Physical Chemistry Chemical Physics 20, Nr. 8 (2018): 5606–16. http://dx.doi.org/10.1039/c7cp08601f.

Der volle Inhalt der Quelle
Annotation:
Ultrafast intersystem crossing mechanisms for two p- and m-nitrophenol groups (PNP and MNP) have been investigated using ab initio nonadiabatic molecular dynamics simulations at the 6SA-CASSCF level of theory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Galparsoro, Oihana, Rémi Pétuya, Fabio Busnengo, Joseba Iñaki Juaristi, Cédric Crespos, Maite Alducin und Pascal Larregaray. „Hydrogen abstraction from metal surfaces: when electron–hole pair excitations strongly affect hot-atom recombination“. Physical Chemistry Chemical Physics 18, Nr. 46 (2016): 31378–83. http://dx.doi.org/10.1039/c6cp06222a.

Der volle Inhalt der Quelle
Annotation:
Using molecular dynamics simulations, we predict that the inclusion of nonadiabatic electronic excitations influences the dynamics of preadsorbed hydrogen abstraction from the W(110) surface by hydrogen scattering.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Takatsuka, Kazuo. „Quantum Chaos in the Dynamics of Molecules“. Entropy 25, Nr. 1 (29.12.2022): 63. http://dx.doi.org/10.3390/e25010063.

Der volle Inhalt der Quelle
Annotation:
Quantum chaos is reviewed from the viewpoint of “what is molecule?”, particularly placing emphasis on their dynamics. Molecules are composed of heavy nuclei and light electrons, and thereby the very basic molecular theory due to Born and Oppenheimer gives a view that quantum electronic states provide potential functions working on nuclei, which in turn are often treated classically or semiclassically. Therefore, the classic study of chaos in molecular science began with those nuclear dynamics particularly about the vibrational energy randomization within a molecule. Statistical laws in probabilities and rates of chemical reactions even for small molecules of several atoms are among the chemical phenomena requiring the notion of chaos. Particularly the dynamics behind unimolecular decomposition are referred to as Intra-molecular Vibrational energy Redistribution (IVR). Semiclassical mechanics is also one of the main research fields of quantum chaos. We herein demonstrate chaos that appears only in semiclassical and full quantum dynamics. A fundamental phenomenon possibly giving birth to quantum chaos is “bifurcation and merging” of quantum wavepackets, rather than “stretching and folding” of the baker’s transformation and the horseshoe map as a geometrical foundation of classical chaos. Such wavepacket bifurcation and merging are indeed experimentally measurable as we showed before in the series of studies on real-time probing of nonadiabatic chemical reactions. After tracking these aspects of molecular chaos, we will explore quantum chaos found in nonadiabatic electron wavepacket dynamics, which emerges in the realm far beyond the Born-Oppenheimer paradigm. In this class of chaos, we propose a notion of Intra-molecular Nonadiabatic Electronic Energy Redistribution (INEER), which is a consequence of the chaotic fluxes of electrons and energy within a molecule.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Duke, Jessica Ryan, und Nandini Ananth. „Mean field ring polymer molecular dynamics for electronically nonadiabatic reaction rates“. Faraday Discussions 195 (2016): 253–68. http://dx.doi.org/10.1039/c6fd00123h.

Der volle Inhalt der Quelle
Annotation:
We present a mean field ring polymer molecular dynamics method to calculate the rate of electron transfer (ET) in multi-state, multi-electron condensed-phase processes. Our approach involves calculating a transition state theory (TST) estimate to the rate using an exact path integral in discrete electronic states and continuous Cartesian nuclear coordinates. A dynamic recrossing correction to the TST rate is then obtained from real-time dynamics simulations using mean field ring polymer molecular dynamics. We employ two different reaction coordinates in our simulations and show that, despite the use of mean field dynamics, the use of an accurate dividing surface to compute TST rates allows us to achieve remarkable agreement with Fermi's golden rule rates for nonadiabatic ET in the normal regime of Marcus theory. Further, we show that using a reaction coordinate based on electronic state populations allows us to capture the turnover in rates for ET in the Marcus inverted regime.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Chowdhury, Sutirtha N., und Pengfei Huo. „State dependent ring polymer molecular dynamics for investigating excited nonadiabatic dynamics“. Journal of Chemical Physics 150, Nr. 24 (28.06.2019): 244102. http://dx.doi.org/10.1063/1.5096276.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Seidu, Issaka, Simon P. Neville, Ryan J. MacDonell und Michael S. Schuurman. „Resolving competing conical intersection pathways: time-resolved X-ray absorption spectroscopy of trans-1,3-butadiene“. Physical Chemistry Chemical Physics 24, Nr. 3 (2022): 1345–54. http://dx.doi.org/10.1039/d1cp05085k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

DOLTSINIS, NIKOS L., und DOMINIK MARX. „FIRST PRINCIPLES MOLECULAR DYNAMICS INVOLVING EXCITED STATES AND NONADIABATIC TRANSITIONS“. Journal of Theoretical and Computational Chemistry 01, Nr. 02 (Oktober 2002): 319–49. http://dx.doi.org/10.1142/s0219633602000257.

Der volle Inhalt der Quelle
Annotation:
Extensions of traditional molecular dynamics to excited electronic states and non-Born–Oppenheimer dynamics are reviewed focusing on applicability to chemical reactions of large molecules, possibly in condensed phases. The latter imposes restrictions on both the level of accuracy of the underlying electronic structure theory and the treatment of nonadiabaticity. This review, therefore, exclusively deals with ab initio "on the fly" molecular dynamics methods. For the same reason, mainly mixed quantum-classical approaches to nonadiabatic dynamics are considered.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Burtsev, S., und R. Camassa. „Nonadiabatic dynamics of dark solitons“. Journal of the Optical Society of America B 14, Nr. 7 (01.07.1997): 1782. http://dx.doi.org/10.1364/josab.14.001782.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Muuronen, Mikko, Shane M. Parker, Enrico Berardo, Alexander Le, Martijn A. Zwijnenburg und Filipp Furche. „Mechanism of photocatalytic water oxidation on small TiO2 nanoparticles“. Chemical Science 8, Nr. 3 (2017): 2179–83. http://dx.doi.org/10.1039/c6sc04378j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

NAKAMURA, HIROKI. „NONADIABATIC TRANSITION AND CHEMICAL DYNAMICS: MULTI-DIMENSIONAL TUNNELING THEORY AND APPLICATIONS OF THE ZHU–NAKAMURA THEORY“. Journal of Theoretical and Computational Chemistry 04, Nr. 01 (März 2005): 127–37. http://dx.doi.org/10.1142/s0219633605001386.

Der volle Inhalt der Quelle
Annotation:
Tunneling and nonadiabatic transition are the most important quantum mechanical effects in chemical dynamics. They are important not only for understanding the dynamics properly, but also for controlling molecular functions. The Zhu–Nakamura (ZN) theory can be combined with the quasi-classical trajectory method and with the IVR(Initial Value Representation)-type semiclassical theory to deal with large chemical systems. Laser control of molecular processes and control of molecular functions can also be realized by properly controlling nonadiabatic transitions. Furthermore, we have recently formulated an accurate theory for evaluating tunneling splitting and tunneling decay rate in multi-dimensional systems and also developed an efficient method to find caustics in multi-dimensional space. These methods combined with the ZN theory are expected to clarify various large scale chemical dynamics. This is a short review article on our recent activities mentioned above.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Freixas, Victor M., Alexander J. White, Tammie Nelson, Huajing Song, Dmitry V. Makhov, Dmitrii Shalashilin, Sebastian Fernandez-Alberti und Sergei Tretiak. „Nonadiabatic Excited-State Molecular Dynamics Methodologies: Comparison and Convergence“. Journal of Physical Chemistry Letters 12, Nr. 11 (17.03.2021): 2970–82. http://dx.doi.org/10.1021/acs.jpclett.1c00266.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

YANG, Jinlong. „Theoretical Simulation of Nonadiabatic Dynamics on Molecular Excited States“. Acta Physico-Chimica Sinica 35, Nr. 1 (2019): 13–14. http://dx.doi.org/10.3866/pku.whxb201805311.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Wang, Bipeng, Weibin Chu, Alexandre Tkatchenko und Oleg V. Prezhdo. „Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks“. Journal of Physical Chemistry Letters 12, Nr. 26 (25.06.2021): 6070–77. http://dx.doi.org/10.1021/acs.jpclett.1c01645.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Calio, Paul B., Donald G. Truhlar und Laura Gagliardi. „Nonadiabatic Molecular Dynamics by Multiconfiguration Pair-Density Functional Theory“. Journal of Chemical Theory and Computation 18, Nr. 2 (14.01.2022): 614–22. http://dx.doi.org/10.1021/acs.jctc.1c01048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Takatsuka, Kazuo. „Theory of molecular nonadiabatic electron dynamics in condensed phases“. Journal of Chemical Physics 147, Nr. 17 (01.11.2017): 174102. http://dx.doi.org/10.1063/1.4993240.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Olsen, Thomas, und Jakob Schiøtz. „Memory effects in nonadiabatic molecular dynamics at metal surfaces“. Journal of Chemical Physics 133, Nr. 13 (07.10.2010): 134109. http://dx.doi.org/10.1063/1.3490247.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Zhang, Yu, Linqiu Li, Sergei Tretiak und Tammie Nelson. „Nonadiabatic Excited-State Molecular Dynamics for Open-Shell Systems“. Journal of Chemical Theory and Computation 16, Nr. 4 (02.03.2020): 2053–64. http://dx.doi.org/10.1021/acs.jctc.9b00928.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie