Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Non regular contact dynamics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Non regular contact dynamics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Non regular contact dynamics"
Caux, S., und R. Zapata. „Modeling and control of biped robot dynamics“. Robotica 17, Nr. 4 (Juli 1999): 413–26. http://dx.doi.org/10.1017/s0263574799001411.
Der volle Inhalt der QuelleJelbart, S., und C. Kuehn. „Extending discrete geometric singular perturbation theory to non-hyperbolic points“. Nonlinearity 37, Nr. 10 (02.09.2024): 105006. http://dx.doi.org/10.1088/1361-6544/ad72c5.
Der volle Inhalt der QuelleWhitfield, Carl A., Martie van Tongeren, Yang Han, Hua Wei, Sarah Daniels, Martyn Regan, David W. Denning, Arpana Verma, Lorenzo Pellis und Ian Hall. „Modelling the impact of non-pharmaceutical interventions on workplace transmission of SARS-CoV-2 in the home-delivery sector“. PLOS ONE 18, Nr. 5 (05.05.2023): e0284805. http://dx.doi.org/10.1371/journal.pone.0284805.
Der volle Inhalt der QuelleFricke, Mathis, und Dieter Bothe. „Boundary conditions for dynamic wetting - A mathematical analysis“. European Physical Journal Special Topics 229, Nr. 10 (September 2020): 1849–65. http://dx.doi.org/10.1140/epjst/e2020-900249-7.
Der volle Inhalt der QuelleKovačič, Boštjan, Tomaž Motoh und Samo Lubej. „Experimental analysis of the dynamic responses of bridging objects with alternative non-contact method“. E3S Web of Conferences 110 (2019): 01028. http://dx.doi.org/10.1051/e3sconf/201911001028.
Der volle Inhalt der QuelleMohajeri, Mohammad Javad, Mehdi Shafieefar und Soheil Radfar. „NUMERICAL MODELING OF NON-COHESIVE CONTACT IN MULTI-BODY HYDRODYNAMIC SYSTEMS WITH SPH“. Coastal Engineering Proceedings, Nr. 35 (23.06.2017): 49. http://dx.doi.org/10.9753/icce.v35.structures.49.
Der volle Inhalt der QuelleDUROG, Mark Ronie O., und Pamela F. RESURRECCION. „Organizational Identification as a Mediator of Organizational Support, Employee Engagement, and Commitment: The Case of Non-Teaching Employees in the Mindanao State University-Iligan Institute of Technology (MSU-IIT)“. Journal of Human Resource Management - HR Advances and Developments 2024, Nr. 2 (24.11.2024): 34–51. http://dx.doi.org/10.46287/uwwt1370.
Der volle Inhalt der QuelleAl-Ghurabi, Ebrahim H., Mohammad Asif, Nadavala Siva Kumar und Sher Afghan Khan. „Fluidization Dynamics of Hydrophobic Nanosilica with Velocity Step Changes“. Applied Sciences 10, Nr. 22 (17.11.2020): 8127. http://dx.doi.org/10.3390/app10228127.
Der volle Inhalt der QuelleGhaychi Afrouz, Setareh, Mohammad Reza Razavi, Ashkan Pourkand und Claudia Mara Dias Wilson. „Dynamic Displacement of an Aluminum Frame Using Close Range Photogrammetry“. Buildings 9, Nr. 8 (29.07.2019): 176. http://dx.doi.org/10.3390/buildings9080176.
Der volle Inhalt der QuelleLegarreta, Carmen, Manuel De la Sen und Santiago Alonso-Quesada. „On the Properties of a Newly Susceptible, Non-Seriously Infected, Hospitalized, and Recovered Subpopulation Epidemic Model“. Mathematics 12, Nr. 2 (11.01.2024): 245. http://dx.doi.org/10.3390/math12020245.
Der volle Inhalt der QuelleDissertationen zum Thema "Non regular contact dynamics"
Larousse, Paul. „Modélisation d'interface endommageable en dynamique explicite dédiée au démoulage de pneumatiques“. Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0098.
Der volle Inhalt der QuelleThe tire is a complex product subjected to numerous constraints, and the designer must find a compromise between cost, performance, safety and recyclability. It is composed of a multitude of overlayed layers of different materials, resulting in complex behaviors. Thus, numerical simulation is an obvious choice by allowing the study of a wide range of scenarios. It enables to study the impact of each manufacturing step, and in particular the unmolding tire process, which inspired this thesis. This non-regular problem is associated to contact and damage, described by a cohesive zone model, with fast dynamics phenomena, rarely combined together in simulation. Since the problem is a transient dynamics one, the choice of an explicit time integrator is natural. The proposed idea here is the use of an explicit symplectic scheme providing by definition good energy properties and discrete equations conservation. Based on previous work, the explicit CD-Lagrange scheme is chosen. Thus, the study is focused on the contact interface between a deformable solid and a rigid one. A method for solving interface problems in dynamics is presented. A thermodynamic and explicit resolution framework is then proposed, with local treatment of non-linearities and non-regularities leading to a matrix-free resolution algorithm. Formulations are based on the thermodynamic framework of generalized standard materials and non-regular mechanics. Next, the focus is set on the thermodynamic evolution laws by studying temporal non-locality in order to limit the damage localization on the interface. Delayed-effect models are then introduced. The modular aspect of the proposed resolution is shown, with application of several interface laws and bulk behaviors. Application to large transformation contact problems is also provided. Finally, the feasibility of the approach is demonstrated by its integration into a semi-industrial code, MEF++
Wang, Zhaoxin. „Dynamics of Mechanical System Involving Conformal and Non-conformal Contact“. OpenSIUC, 2010. https://opensiuc.lib.siu.edu/theses/222.
Der volle Inhalt der QuelleShahzamanian, Sichani Matin. „Wheel-rail contact modelling in vehicle dynamics simulation“. Licentiate thesis, KTH, Spårfordon, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127949.
Der volle Inhalt der QuelleQC 20130911
Shahzamanian, Sichani Matin. „On Efficient Modelling of Wheel-Rail Contact in Vehicle Dynamics Simulation“. Doctoral thesis, KTH, Spårfordon, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-181691.
Der volle Inhalt der QuelleQC 20160202
Votsios, Vasilis. „Contact mechanics and impact dynamics of non-conforming elastic and viscoelastic semi-infinite or thin bonded layered solids“. Thesis, Loughborough University, 2003. https://dspace.lboro.ac.uk/2134/11815.
Der volle Inhalt der QuelleHedman, Stefan. „Smooth and non-smooth approaches to simulation of granular matter“. Thesis, Umeå universitet, Institutionen för fysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-50584.
Der volle Inhalt der QuelleDiallo, Moustapha. „Wetting on heterogeneous metal-oxides regular patterned surfaces by a non-reactive liquid metal“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC004/document.
Der volle Inhalt der QuelleIn hot-dip galvanizing, steel sheets are protected against corrosion by a thin layer of zinc obtained by immersion in a zinc alloy bath. Before this process, the steel sheets undergo recrystallization annealing to eliminate stresses after cold-rolling. The annealing conditions used reduce the native iron oxide film, which promotes the wettability of the steel surface with liquid zinc. However, new high-strength steels contain significant quantities of addition elements, such as silicon and manganese. These elements diffuse on the surface of the steel sheets during recrystallization annealing and form oxide particles or films by selective external oxidation. If pure iron is well wet with liquid zinc, these oxides are not and their presence on the surface can lead to defects in the final coating.To study the influence of oxide size and their distribution on liquid metal wetting, we studied a non-reactive wetting of liquid lead on a heterogeneous Fe / silica textured surface using the dispensed technique.These surfaces were designed by plasma-assisted chemical vapour deposition followed by a photolithographic process.After impact, the drop extends to its maximum spreading diameter. This is followed by a phase of drop receding. During this, the drop is more or less retained, depending on the silica coverage rate, on the pure iron: stick-slip motion. On surfaces with low silica content, this phenomenon causes a deformation of the drop shape which is more elongated in one direction and sometimes at the division of the drop.We showed that wetting is mainly affected by the surface fraction of silica.Finally, we modelled the different phases of drop spreading on these heterogeneous surfaces. Literature models were reviewed and adapted and macroscopic models of the oscillation of the drop during its spreading were proposed
Dia, Seydou. „Modélisation d'un contact dynamique non-linéaire : application au développement et à l'optimisation de modalsens“. Phd thesis, Université de Haute Alsace - Mulhouse, 2010. http://tel.archives-ouvertes.fr/tel-00683067.
Der volle Inhalt der QuelleSundar, Sriram. „Impact damping and friction in non-linear mechanical systems with combined rolling-sliding contact“. The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1386245045.
Der volle Inhalt der QuelleAHMED, RIZWAN. „Experimental Investigation Of Non-Linear Structural Dynamics of Shrouded Turbine Blade“. Doctoral thesis, Politecnico di Torino, 2022. https://hdl.handle.net/11583/2972153.
Der volle Inhalt der QuelleBücher zum Thema "Non regular contact dynamics"
Friedrich, Pfeiffer, Wriggers Peter und SpringerLink (Online service), Hrsg. Numerics of Unilateral Contacts and Friction: Modeling and Numerical Time Integration in Non-Smooth Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Den vollen Inhalt der Quelle findenStuder, Christian. Numerics of Unilateral Contacts and Friction: Modeling and Numerical Time Integration in Non-Smooth Dynamics. Springer, 2010.
Den vollen Inhalt der Quelle findenMercati, Flavio. Solutions of Shape Dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789475.003.0013.
Der volle Inhalt der QuelleTimmins, Bryan. Non-prescription drugs. Herausgegeben von Patrick Davey und David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0342.
Der volle Inhalt der QuelleMann, Peter. Autonomous Geometrical Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0022.
Der volle Inhalt der QuelleBuchteile zum Thema "Non regular contact dynamics"
Shahini, I., M. R. Ashory, S. Shahbazmohamadi, A. A. Maddah und M. M. Khatibi. „Non contact eddy current dampers for control systems“. In Structural Dynamics, Volume 3, 1595–603. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9834-7_144.
Der volle Inhalt der QuelleSamarsky, A. A., A. P. Favorsky, V. F. Tishkin, V. F. Vasilevsky und K. V. Vyaznikov. „Non-Regular Adaptive Grids for 2-D Gas Dynamics“. In European Consortium for Mathematics in Industry, 263–66. Wiesbaden: Vieweg+Teubner Verlag, 1992. http://dx.doi.org/10.1007/978-3-663-09834-8_53.
Der volle Inhalt der QuelleWeidauer, Tim, und Kai Willner. „Reduced Order Modelling for Non-linear Rotating Systems in ALE Formulation with Contact“. In Nonlinear Dynamics, Volume 1, 287–302. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74280-9_31.
Der volle Inhalt der QuelleCappellini, A., D. Leva, C. Rivolta und M. Vanali. „Use of Non Contact Radar Techniques to Dynamics Measurement Purposes“. In Topics in Modal Analysis II, Volume 6, 247–54. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2419-2_23.
Der volle Inhalt der QuelleRodriguez, F. B., P. Varona, R. Huerta, M. I. Rabinovich und Henry D. I. Abarbanel. „Richer Network Dynamics of Intrinsically Non-regular Neurons Measured through Mutual Information“. In Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence, 490–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45720-8_58.
Der volle Inhalt der QuelleBradley, D. I., und G. R. Pickett. „Regular Vortex Production by a Moving Wire in Superfluid 3He-B“. In Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions, 345–51. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4106-2_16.
Der volle Inhalt der QuelleSchiavoni, Mattia, Gianluca Standoli, Francesca Bianconi, Ersilia Giordano und Francesco Clementi. „Discontinuous Dynamics of Santa Maria Annunziata Church Under Seismic Loading: A Non-smooth Contact Dynamics Approach“. In RILEM Bookseries, 484–93. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39450-8_40.
Der volle Inhalt der QuelleLefaucheux, Engel, Joël Ouaknine, David Purser und Mohammadamin Sharifi. „Model Checking Linear Dynamical Systems under Floating-point Rounding“. In Tools and Algorithms for the Construction and Analysis of Systems, 47–65. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30823-9_3.
Der volle Inhalt der QuelleHendriks, Jennifer. „Chapter 4. The dynamics of lifelong acquisition in dialect contact and change“. In Lifespan Acquisition and Language Change, 84–103. Amsterdam: John Benjamins Publishing Company, 2024. http://dx.doi.org/10.1075/ahs.14.04hen.
Der volle Inhalt der QuelleKaragiozis, K. N., M. P. PaïDoussis, E. Grinevich, A. K. Misra und M. Amabili. „Stability and Non-Linear Dynamics of Clamped Circular Cylindrical Shells in Contact with Flowing Fluid“. In IUTAM Symposium on Integrated Modeling of Fully Coupled Fluid Structure Interactions Using Analysis, Computations and Experiments, 375–90. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-0995-9_27.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Non regular contact dynamics"
Keogh, Patrick S., Chris Lusty und Nicola Y. Bailey. „Nonlinear Dynamics and Control of Rotors Operating Within the Clearance Gaps of Magnetic Bearing Systems“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71865.
Der volle Inhalt der QuellePontonnier, Soufiane, Samuel Quaegebeur, Fabrice Thouverez und Patricio Almeida. „Methodology for Modeling Non Linear Thermomechanical Response With Wear at High-Speed Interactions: Application to a Pin-Disk Configuration“. In ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/gt2024-126280.
Der volle Inhalt der QuelleZafar, Madiha, und Muhammad Owais Qarni. „UNCOVERING DIVERSIFICATION BENEFITS: RETURN SPILLOVERS IN USA ESG AND NON-ESG ORIENTED BANKS“. In International Conference on Business, Economics, Law, Language & Psychology, 18-19 June 2024, London. Global Research & Development Services, 2024. http://dx.doi.org/10.20319/icssh.2024.328329.
Der volle Inhalt der QuelleAl-Ani, Dhafar, Hamed H. Afshari und Saeid Habibi. „A Robust Controller of Multi DOF-Cooperating Planar Robotic Manipulators Using a Tuned PID Approach“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36052.
Der volle Inhalt der QuelleBouzar Essaidi, Ahmed, Bachir Menkouz, Moussa Haddad und Taha Chettibi. „NON-REGULAR VEHICLE DYNAMICS. APPLICATION TO COLLISION“. In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.2133.9025.
Der volle Inhalt der QuelleQu, Jie, Chaoran Dou, Jianzhi Li, Zhonghao Rao und Ben Xu. „Numerical and Experimental Study of Bioink Transfer Process in Laser Induced Forward Transfer (LIFT) 3D Bioprinting“. In ASME 2020 Heat Transfer Summer Conference collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ht2020-9147.
Der volle Inhalt der QuelleSharf, Inna, und Yuning Zhang. „A Contact Force Solution for Non-Colliding Contact Dynamics Simulation“. In ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/detc2006-99139.
Der volle Inhalt der QuelleWang, Xiaowen. „Passive control of hypersonic non-equilibrium boundary layers using regular porous coating“. In 47th AIAA Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-4519.
Der volle Inhalt der QuelleHuang, J., K. Krabbenhoft, M. Vicente da Silva und A. V. Lyamin. „SIMULATING GRANULAR COLUMN COLLAPSE BY NON-SMOOTH CONTACT DYNAMICS“. In 10th World Congress on Computational Mechanics. São Paulo: Editora Edgard Blücher, 2014. http://dx.doi.org/10.5151/meceng-wccm2012-18460.
Der volle Inhalt der QuellePfeiffer, Friedrich. „Steps Towards Non-Smooth Multibody Dynamics“. In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-74773.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Non regular contact dynamics"
Ge, Haitao, Juan Carlos Quezada, Vincent Le Houerou und Cyrille Chazallon. Investigation of Tire-pavement Interaction Based on Non-smooth Contact Dynamics Method. Peeref, September 2022. http://dx.doi.org/10.54985/peeref.2209p2134642.
Der volle Inhalt der QuelleClaire, Wolstenholme, und Nathaniel Pickering. Evaluation of bursary and college projects: Producers of Enhancement, Evaluation and Research (PEER). Sheffield Hallam University, 2024. https://doi.org/10.7190/steer/peer.
Der volle Inhalt der QuelleMorphett, Jane, Alexandra Whittaker, Amy Reichelt und Mark Hutchinson. Perineuronal net structure as a non-cellular mechanism of affective state, a scoping review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2021. http://dx.doi.org/10.37766/inplasy2021.8.0075.
Der volle Inhalt der QuelleCalafat, Francisco Mir, Thomas Frederikse und Kevin Horsburgh. Mediterranean trend and acceleration sea-level estimates. EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d5.2_v2.
Der volle Inhalt der QuelleRarasati, Niken, und Rezanti Putri Pramana. Giving Schools and Teachers Autonomy in Teacher Professional Development Under a Medium-Capability Education System. Research on Improving Systems of Education (RISE), Januar 2023. http://dx.doi.org/10.35489/bsg-rise-ri_2023/050.
Der volle Inhalt der QuelleWolfenson, David, William W. Thatcher und James E. Kinder. Regulation of LH Secretion in the Periovulatory Period as a Strategy to Enhance Ovarian Function and Fertility in Dairy and Beef Cows. United States Department of Agriculture, Dezember 2003. http://dx.doi.org/10.32747/2003.7586458.bard.
Der volle Inhalt der QuelleMGR Monthly Infographics Report: August 2024. Microgovernance Research Initiative (MGR), November 2024. http://dx.doi.org/10.57189/mgrinfaug24.
Der volle Inhalt der QuelleMGR Quarterly Infographics Report: July - September, 2024. Microgovernance Research Initiative (MGR), Oktober 2024. http://dx.doi.org/10.57189/mgrinfq7js4.
Der volle Inhalt der QuelleMGR Monthly Infographics Report: October 2024. Microgovernance Research Initiative (MGR), November 2024. http://dx.doi.org/10.57189/mgrinfoct24.
Der volle Inhalt der QuelleMonthly Infographics Report: January 2023. Microgovernance Research Initiative (MGR), Februar 2023. http://dx.doi.org/10.57189/mgrinfjan23.
Der volle Inhalt der Quelle