Zeitschriftenartikel zum Thema „Non noble transition metal“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Non noble transition metal" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Caffrey, Andrew P., Patrick E. Hopkins, J. Michael Klopf und Pamela M. Norris. „Thin Film Non-Noble Transition Metal Thermophysical Properties“. Microscale Thermophysical Engineering 9, Nr. 4 (Oktober 2005): 365–77. http://dx.doi.org/10.1080/10893950500357970.
Der volle Inhalt der QuelleChen, Ying, Yuling Hu und Gongke Li. „A Review on Non-Noble Metal Substrates for Surface-Enhanced Raman Scattering Detection“. Chemosensors 11, Nr. 8 (01.08.2023): 427. http://dx.doi.org/10.3390/chemosensors11080427.
Der volle Inhalt der QuelleGuo, Xiaotian, Guangxun Zhang, Qing Li, Huaiguo Xue und Huan Pang. „Non-noble metal-transition metal oxide materials for electrochemical energy storage“. Energy Storage Materials 15 (November 2018): 171–201. http://dx.doi.org/10.1016/j.ensm.2018.04.002.
Der volle Inhalt der QuelleMantella, Valeria, Laia Castilla-Amorós und Raffaella Buonsanti. „Shaping non-noble metal nanocrystals via colloidal chemistry“. Chemical Science 11, Nr. 42 (2020): 11394–403. http://dx.doi.org/10.1039/d0sc03663c.
Der volle Inhalt der QuelleNiu, Xiangheng, Xin Li, Jianming Pan, Yanfang He, Fengxian Qiu und Yongsheng Yan. „Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges“. RSC Advances 6, Nr. 88 (2016): 84893–905. http://dx.doi.org/10.1039/c6ra12506a.
Der volle Inhalt der QuelleAlhassan, Mansur, Mahadi Bin Bahari, Abdelrahman Hamad Khalifa Owgi und Thuan Van Tran. „Non-noble metal catalysts for dry reforming of methane: Challenges, opportunities, and future directions“. E3S Web of Conferences 516 (2024): 02002. http://dx.doi.org/10.1051/e3sconf/202451602002.
Der volle Inhalt der QuelleZhang, Wenqing, Juan Wang, Lanling Zhao, Junru Wang und Mingwen Zhao. „Transition-metal monochalcogenide nanowires: highly efficient bi-functional catalysts for the oxygen evolution/reduction reactions“. Nanoscale 12, Nr. 24 (2020): 12883–90. http://dx.doi.org/10.1039/d0nr01148g.
Der volle Inhalt der QuelleNkabinde, Siyabonga S., Patrick V. Mwonga, Siyasanga Mpelane, Zakhele B. Ndala, Tshwarela Kolokoto, Ndivhuwo P. Shumbula, Obakeng Nchoe et al. „Phase-dependent electrocatalytic activity of colloidally synthesized WP and α-WP2 electrocatalysts for hydrogen evolution reaction“. New Journal of Chemistry 45, Nr. 34 (2021): 15594–606. http://dx.doi.org/10.1039/d1nj00927c.
Der volle Inhalt der QuelleJin, Xinxin, Yu Jiang, Qi Hu, Shaohua Zhang, Qike Jiang, Li Chen, Ling Xu, Yan Xie und Jiahui Huang. „Highly efficient electrocatalysts with CoO/CoFe2O4 composites embedded within N-doped porous carbon materials prepared by hard-template method for oxygen reduction reaction“. RSC Advances 7, Nr. 89 (2017): 56375–81. http://dx.doi.org/10.1039/c7ra09517a.
Der volle Inhalt der QuelleMasferrer-Rius, Eduard, und Robertus J. M. Klein Gebbink. „Non-Noble Metal Aromatic Oxidation Catalysis: From Metalloenzymes to Synthetic Complexes“. Catalysts 13, Nr. 4 (19.04.2023): 773. http://dx.doi.org/10.3390/catal13040773.
Der volle Inhalt der QuelleMakvandi, Pooyan, Atefeh Zarepour, Xuanqi Zheng, Tarun Agarwal, Matineh Ghomi, Rossella Sartorius, Ehsan Nazarzadeh Zare et al. „Non-spherical nanostructures in nanomedicine: From noble metal nanorods to transition metal dichalcogenide nanosheets“. Applied Materials Today 24 (September 2021): 101107. http://dx.doi.org/10.1016/j.apmt.2021.101107.
Der volle Inhalt der QuellePark, Hyeonji, Kyeongwon Han, Hyungjin Kim, Jeongeun Song, Yuri Ko und Yukwon Jeon. „Optimization of Oxygen Reduction Activity Via Transition Metal-Oxide Based Composite Electrodes in Acidic Medium“. ECS Meeting Abstracts MA2024-02, Nr. 25 (22.11.2024): 2035. https://doi.org/10.1149/ma2024-02252035mtgabs.
Der volle Inhalt der QuelleDu, Meng, Lingling Guo, Hongju Ren, Xin Tao, Yunan Li, Bing Nan, Rui Si, Chongqi Chen und Lina Li. „Non-Noble FeCrOx Bimetallic Nanoparticles for Efficient NH3 Decomposition“. Nanomaterials 13, Nr. 7 (05.04.2023): 1280. http://dx.doi.org/10.3390/nano13071280.
Der volle Inhalt der QuelleSheetal, Pushkar Mehara und Pralay Das. „Methanol as a greener C1 synthon under non-noble transition metal-catalyzed conditions“. Coordination Chemistry Reviews 475 (Januar 2023): 214851. http://dx.doi.org/10.1016/j.ccr.2022.214851.
Der volle Inhalt der QuelleAmin, R. S., Amani E. Fetohi, D. Z. Khater, Jin Lin, Yanzhong Wang, Chao Wang und K. M. El-Khatib. „Selenium-transition metal supported on a mixture of reduced graphene oxide and silica template for water splitting“. RSC Advances 13, Nr. 23 (2023): 15856–71. http://dx.doi.org/10.1039/d3ra01945d.
Der volle Inhalt der QuelleHao, Zhuo, Yangyang Ma, Yisong Chen, Pei Fu und Pengyu Wang. „Non-Noble Metal Catalysts in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cells: Recent Advances“. Nanomaterials 12, Nr. 19 (24.09.2022): 3331. http://dx.doi.org/10.3390/nano12193331.
Der volle Inhalt der QuelleXie, Song, Hao Dong, Xiang Peng und Paul K. Chu. „Non-precious Electrocatalysts for the Hydrogen Evolution Reaction“. Innovation Discovery 1, Nr. 2 (17.05.2024): 11. http://dx.doi.org/10.53964/id.2024011.
Der volle Inhalt der QuelleLi, Yang, Yao Liu, Jinhui Zhang, Dashuai Wang und Jing Xu. „Rational Design of Non-Noble Metal Single-Atom Catalysts in Lithium–Sulfur Batteries through First Principles Calculations“. Nanomaterials 14, Nr. 8 (17.04.2024): 692. http://dx.doi.org/10.3390/nano14080692.
Der volle Inhalt der QuelleMoni, Snehasis, und Bhaskar Mondal. „Correlation between Key Steps and Hydricity in CO2 Hydrogenation Catalysed by Non-Noble Metal PNP-Pincer Complexes“. Catalysts 13, Nr. 3 (15.03.2023): 592. http://dx.doi.org/10.3390/catal13030592.
Der volle Inhalt der QuelleYang, Yibin, Yingqing Ou, Yang Yang, Xijun Wei, Di Gao, Lin Yang, Yuli Xiong, Hongmei Dong, Peng Xiao und Yunhuai Zhang. „Modulated transition metal–oxygen covalency in the octahedral sites of CoFe layered double hydroxides with vanadium doping leading to highly efficient electrocatalysts“. Nanoscale 11, Nr. 48 (2019): 23296–303. http://dx.doi.org/10.1039/c9nr08795h.
Der volle Inhalt der QuelleYan, Liang, Bing Zhang, Shangyou Wu und Jianlin Yu. „A general approach to the synthesis of transition metal phosphide nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting“. Journal of Materials Chemistry A 8, Nr. 28 (2020): 14234–42. http://dx.doi.org/10.1039/d0ta05189f.
Der volle Inhalt der QuelleBudweg, Svenja, Kathrin Junge und Matthias Beller. „Catalytic oxidations by dehydrogenation of alkanes, alcohols and amines with defined (non)-noble metal pincer complexes“. Catalysis Science & Technology 10, Nr. 12 (2020): 3825–42. http://dx.doi.org/10.1039/d0cy00699h.
Der volle Inhalt der QuelleZhou, Shanhu, und Jun Hu. „Enhancing perpendicular magnetocrystalline anisotropy in Fe ultrathin films by non-noble transition-metal substrate“. International Journal of Modern Physics C 31, Nr. 09 (27.08.2020): 2050134. http://dx.doi.org/10.1142/s012918312050134x.
Der volle Inhalt der QuelleOgo, Shuhei, und Yasushi Sekine. „Recent progress in ethanol steam reforming using non-noble transition metal catalysts: A review“. Fuel Processing Technology 199 (März 2020): 106238. http://dx.doi.org/10.1016/j.fuproc.2019.106238.
Der volle Inhalt der QuelleWang, Yijing. „Rational Design of HighPerformance M-N-C Single Atom Catalysts“. Journal of Mineral and Material Science (JMMS) 4, Nr. 5 (04.12.2023): 1–3. http://dx.doi.org/10.54026/jmms/1074.
Der volle Inhalt der QuelleLozano, Luis A., Betina M. C. Faroldi, María A. Ulla und Juan M. Zamaro. „Metal–Organic Framework-Based Sustainable Nanocatalysts for CO Oxidation“. Nanomaterials 10, Nr. 1 (17.01.2020): 165. http://dx.doi.org/10.3390/nano10010165.
Der volle Inhalt der QuellePan, Jing, Rui Wang, Xiaoyong Xu, Jingguo Hu und Liang Ma. „Transition metal doping activated basal-plane catalytic activity of two-dimensional 1T’-ReS2 for hydrogen evolution reaction: a first-principles calculation study“. Nanoscale 11, Nr. 21 (2019): 10402–9. http://dx.doi.org/10.1039/c9nr00997c.
Der volle Inhalt der QuelleLiu, Taizhe. „Performance of recent transition metal cocatalysts under hydrogen evolution reaction“. Applied and Computational Engineering 7, Nr. 1 (21.07.2023): 136–46. http://dx.doi.org/10.54254/2755-2721/7/20230407.
Der volle Inhalt der QuelleRedina, Elena, Olga Tkachenko und Tapio Salmi. „Recent Advances in C5 and C6 Sugar Alcohol Synthesis by Hydrogenation of Monosaccharides and Cellulose Hydrolytic Hydrogenation over Non-Noble Metal Catalysts“. Molecules 27, Nr. 4 (17.02.2022): 1353. http://dx.doi.org/10.3390/molecules27041353.
Der volle Inhalt der QuelleSong, Meixiu, Yanhui Song, Wenbo Sha, Bingshe Xu, Junjie Guo und Yucheng Wu. „Recent Advances in Non-Precious Transition Metal/Nitrogen-doped Carbon for Oxygen Reduction Electrocatalysts in PEMFCs“. Catalysts 10, Nr. 1 (20.01.2020): 141. http://dx.doi.org/10.3390/catal10010141.
Der volle Inhalt der QuellePerović, Klara, Silvia Morović, Ante Jukić und Krešimir Košutić. „Alternative to Conventional Solutions in the Development of Membranes and Hydrogen Evolution Electrocatalysts for Application in Proton Exchange Membrane Water Electrolysis: A Review“. Materials 16, Nr. 18 (20.09.2023): 6319. http://dx.doi.org/10.3390/ma16186319.
Der volle Inhalt der QuelleKuang, Guanghua, Guangyuan Liu, Xingxing Zhang, Naihao Lu, Yiyuan Peng, Qiang Xiao und Yirong Zhou. „Directing-Group-Assisted Transition-Metal-Catalyzed Direct C–H Oxidative Annulation of Arenes with Alkynes for Facile Construction of Various Oxygen Heterocycles“. Synthesis 52, Nr. 07 (10.02.2020): 993–1006. http://dx.doi.org/10.1055/s-0039-1690816.
Der volle Inhalt der QuelleSelvam, Praveen Kumar, Muhammad Sohail Riaz und Pau Farràs Costa. „Non-Noble Transition Metal-Based Electrocatalysts for Green Hydrogen Production from Anion Exchange Membrane (AEM) Seawater Electrolyzer“. ECS Meeting Abstracts MA2023-02, Nr. 42 (22.12.2023): 2154. http://dx.doi.org/10.1149/ma2023-02422154mtgabs.
Der volle Inhalt der QuelleBarshick, C. M., D. H. Smith, E. Johnson, F. L. King, T. Bastug und B. Fricke. „Periodic Nature of Metal-Noble Gas Adduct Ions in Glow Discharge Mass Spectrometry“. Applied Spectroscopy 49, Nr. 7 (Juli 1995): 885–89. http://dx.doi.org/10.1366/0003702953964840.
Der volle Inhalt der QuelleKim, Jeong-Hyun, Jeong-Gyu Lee und Min-Jae Choi. „Progress of Metal Chalcogenides as Catalysts for Efficient Electrosynthesis of Hydrogen Peroxide“. Materials 17, Nr. 17 (29.08.2024): 4277. http://dx.doi.org/10.3390/ma17174277.
Der volle Inhalt der QuelleWu, Fei, Yueying Wang, Shunxin Fei und Gang Zhu. „Co-Promoted CoNi Bimetallic Nanocatalyst for the Highly Efficient Catalytic Hydrogenation of Olefins“. Nanomaterials 13, Nr. 13 (26.06.2023): 1939. http://dx.doi.org/10.3390/nano13131939.
Der volle Inhalt der QuelleTao, Chong, Limo He, Xuechen Zhou, Hanjian Li, Qiangqiang Ren, Hengda Han, Song Hu, Sheng Su, Yi Wang und Jun Xiang. „Review of Emission Characteristics and Purification Methods of Volatile Organic Compounds (VOCs) in Cooking Oil Fume“. Processes 11, Nr. 3 (27.02.2023): 705. http://dx.doi.org/10.3390/pr11030705.
Der volle Inhalt der QuelleYoon, Seo Jeong, Se Jung Lee, Min Hui Kim, Hui Ae Park, Hyo Seon Kang, Seo-Yoon Bae und In-Yup Jeon. „Recent Tendency on Transition-Metal Phosphide Electrocatalysts for the Hydrogen Evolution Reaction in Alkaline Media“. Nanomaterials 13, Nr. 18 (21.09.2023): 2613. http://dx.doi.org/10.3390/nano13182613.
Der volle Inhalt der QuelleGuo, Yajie, Yongjie Liu, Yanrong Liu, Chunrui Zhang, Kelun Jia, Jibo Su und Ke Wang. „The High Electrocatalytic Performance of NiFeSe/CFP for Hydrogen Evolution Reaction Derived from a Prussian Blue Analogue“. Catalysts 12, Nr. 7 (04.07.2022): 739. http://dx.doi.org/10.3390/catal12070739.
Der volle Inhalt der QuelleLi, Jiangtian, Deryn Chu, Connor Poland, Cooper Smith, Enoch A. Nagelli und Victor Jaffett. „XPS Depth Profiling of Surface Restructuring Responsible for Hydrogen Evolution Reaction Activity of Nickel Sulfides in Alkaline Electrolyte“. Materials 18, Nr. 3 (25.01.2025): 549. https://doi.org/10.3390/ma18030549.
Der volle Inhalt der QuelleYang, Kaixuan, Naimeng Chen, Xiaomiao Guo, Ruoqi Zhang, Xiaoyu Sheng, Hui Ge, Zhiguo Zhu, Hengquan Yang und Hongying Lü. „Phase-Controlled Cobalt Catalyst Boosting Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran“. Molecules 28, Nr. 13 (22.06.2023): 4918. http://dx.doi.org/10.3390/molecules28134918.
Der volle Inhalt der QuelleWu, Ling-Wei, Yan-Fang Yao, Shi-Yin Xu, Xu-You Cao, Yan-Wei Ren, Li-Ping Si und Hai-Yang Liu. „Electrocatalytic Hydrogen Evolution of Transition Metal (Fe, Co and Cu)–Corrole Complexes Bearing an Imidazole Group“. Catalysts 14, Nr. 1 (19.12.2023): 5. http://dx.doi.org/10.3390/catal14010005.
Der volle Inhalt der QuelleNing, Cai, Yadong Zhang, Zhaoshun Meng, Chuanyun Xiao und Ruifeng Lu. „Computational Screening of Single Non-Noble Transition-Metal Atoms Confined Inside Boron Nitride Nanotubes for CO Oxidation“. Journal of Physical Chemistry C 124, Nr. 3 (26.12.2019): 2030–38. http://dx.doi.org/10.1021/acs.jpcc.9b10585.
Der volle Inhalt der QuelleKumaran, Yamini, Haralabos Efstathiadis und Iulian Gherasoiu. „Engineering Transition Metals As Noble-Metal Free Bifunctional Electrode for Overall Water Splitting“. ECS Meeting Abstracts MA2022-02, Nr. 60 (09.10.2022): 2523. http://dx.doi.org/10.1149/ma2022-02602523mtgabs.
Der volle Inhalt der QuelleZhiquan Hou, Wenbo Pei, Xing Zhang, Yuxi Liu, Jiguang Deng und Hongxing Dai. „Oxidative Removal of Volatile Organic Compounds over the Supported Bimetallic Catalysts“. Global Environmental Engineers 7 (16.07.2020): 1–27. http://dx.doi.org/10.15377/2410-3624.2020.07.1.
Der volle Inhalt der QuelleAvinash, Kiran, K. R. Rohit und Gopinathan Anilkumar. „Iron, Cobalt and Nickel-catalyzed Hydrosilylative Reduction of Functional Groups“. Current Catalysis 10, Nr. 3 (Dezember 2021): 179–205. http://dx.doi.org/10.2174/2211544710666211108095557.
Der volle Inhalt der QuelleLi, Jiangtian, Deryn Chu, David R. Baker und Rongzhong Jiang. „(Invited) Regulating Electronic Structure for Clean Energy Powered Water Electrolysis on Non-Precious Catalysts“. ECS Meeting Abstracts MA2022-01, Nr. 38 (07.07.2022): 1690. http://dx.doi.org/10.1149/ma2022-01381690mtgabs.
Der volle Inhalt der QuelleZhou, Zhaoyu, Yongsheng Jia, Qiang Wang, Zhongyu Jiang, Junwu Xiao und Limin Guo. „Recent Progress on Molybdenum Carbide-Based Catalysts for Hydrogen Evolution: A Review“. Sustainability 15, Nr. 19 (07.10.2023): 14556. http://dx.doi.org/10.3390/su151914556.
Der volle Inhalt der QuelleCarroll, Zachary Liam, Michel Haché, Bowen Wang, Lixin Chen, Uwe Erb, Steven Thorpe und Yu Zou. „Electrodeposition of Non-Noble High-Entropy Alloys for Effective Hydrogen Evolution Electrocatalysts“. ECS Meeting Abstracts MA2024-01, Nr. 34 (09.08.2024): 1874. http://dx.doi.org/10.1149/ma2024-01341874mtgabs.
Der volle Inhalt der QuelleTran, Phong D., Lifei Xi, Sudip K. Batabyal, Lydia H. Wong, James Barber und Joachim Say Chye Loo. „Enhancing the photocatalytic efficiency of TiO2 nanopowders for H2 production by using non-noble transition metal co-catalysts“. Physical Chemistry Chemical Physics 14, Nr. 33 (2012): 11596. http://dx.doi.org/10.1039/c2cp41450c.
Der volle Inhalt der Quelle