Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Non-lymphoid organs“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Non-lymphoid organs" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Non-lymphoid organs"
Jandrić-Kočić, Marijana. „Recirculation of naive T lymphocytes“. Medicinski glasnik Specijalne bolnice za bolesti štitaste žlezde i bolesti metabolizma 27, Nr. 86 (2022): 25–48. http://dx.doi.org/10.5937/mgiszm2286025j.
Der volle Inhalt der QuelleParker, George A., und Catherine A. Picut. „Immune Functioning in Non lymphoid Organs: The Liver“. Toxicologic Pathology 40, Nr. 2 (16.11.2011): 237–47. http://dx.doi.org/10.1177/0192623311428475.
Der volle Inhalt der QuelleFeizi, Neda, Neda Feizi, Gang Zhang, Latha Halesha, Khodor Abou Daya und Martin H. Oberbarnscheidt. „Tertiary Lymphoid Organs promote allograft rejection“. Journal of Immunology 212, Nr. 1_Supplement (01.05.2024): 0321_5062. http://dx.doi.org/10.4049/jimmunol.212.supp.0321.5062.
Der volle Inhalt der QuelleWeninger, Wolfgang, Maté Biro und Rohit Jain. „Leukocyte migration in the interstitial space of non-lymphoid organs“. Nature Reviews Immunology 14, Nr. 4 (07.03.2014): 232–46. http://dx.doi.org/10.1038/nri3641.
Der volle Inhalt der QuellePreziuso, S., GE Magi, S. Mari und G. Renzoni. „Detection of Visna Maedi virus in mesenteric lymph nodes and in other lymphoid tissues of sheep three years after respiratory infection“. Veterinární Medicína 58, No. 7 (20.08.2013): 359–63. http://dx.doi.org/10.17221/6916-vetmed.
Der volle Inhalt der QuelleTkachev, Victor, Scott Nicholas Furlan, E. Lake Potter, Betty H. Zheng, Daniel J. Hunt, Lucrezia Colonna, Agne Taraseviciute et al. „Delineating tissue-specific alloimmunity during acute GVHD“. Journal of Immunology 200, Nr. 1_Supplement (01.05.2018): 55.1. http://dx.doi.org/10.4049/jimmunol.200.supp.55.1.
Der volle Inhalt der QuelleHotchkiss, R., M. Hiramatsu, P. Cobb, T. Buchman und I. Karl. „CECAL LIGATION AND PUNCTURE (CLP) IN MICE TRIGGERS APOPTOSIS IN LYMPHOID AND NON-LYMPHOID ORGANS.“ Shock 5 (Juni 1996): 71. http://dx.doi.org/10.1097/00024382-199606002-00226.
Der volle Inhalt der QuelleJia, Cunxin, Yujie Zhou, Xiaohuan Huang, Xi Peng, Linyan Liu, Linyan Zhou, Li Jin, Hongjuan Shi, Jing Wei und Deshou Wang. „The cellular protein expression of Foxp3 in lymphoid and non-lymphoid organs of Nile tilapia“. Fish & Shellfish Immunology 45, Nr. 2 (August 2015): 300–306. http://dx.doi.org/10.1016/j.fsi.2015.03.021.
Der volle Inhalt der QuelleFinke, Daniela, und Hans Acha-Orbea. „Differential migration ofin vivo primed B and T lymphocytes to lymphoid and non-lymphoid organs“. European Journal of Immunology 31, Nr. 9 (September 2001): 2603–11. http://dx.doi.org/10.1002/1521-4141(200109)31:9<2603::aid-immu2603>3.0.co;2-8.
Der volle Inhalt der QuelleSainova, Iskra, Vera Kolyovska, Desislava Drenska, Dimitar Maslarov, Andrey Petrov, Dimitrina Dimitrova-Dikanarova und Tzvetanka Markova. „Production of anti-GM3, anti-GM1, and anti-GD1A antibodies by non-lymphoid cells, tissues, and organs“. Pharmacia 71 (01.11.2024): 1–8. http://dx.doi.org/10.3897/pharmacia.71.e138022.
Der volle Inhalt der QuelleDissertationen zum Thema "Non-lymphoid organs"
Roubanis, Aristeidis. „Investigating the metabolism of regulatory T cells in non-lymphoid tissues using a genetic approach and an in vivo adaptation of SCENITH“. Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS321.pdf.
Der volle Inhalt der QuelleRegulation of cellular metabolism is a central element governing the fate and function of T cells. Among T cells, CD4+ Foxp3+ regulatory T cells (Tregs) are critical for the maintenance of self-tolerance and immune homeostasis. Tregs are present in lymphoid tissues where they control immune responses and in various non-lymphoid tissues where they maintain tissue homeostasis. Precursors of Tregs colonising non- lymphoid tissues are present in the spleen and lymph nodes and undergo developmental differentiation steps. However, the mechanisms by which Tregs colonise non-lymphoid tissues and how tissue Tregs metabolically adapt to varying microenvironments across tissues remain poorly understood partly because of experimental difficulties in assessing the metabolic profiles of rare cells in physiological conditions. To investigate the metabolism of Tregs, mice conditionally knocked out for the metabolic checkpoint Liver kinase B1 (LKB1) (cKO) were generated. These mice have a significantly reduced lifespan due to a systemic hyperinflammatory disorder, despite having relatively normal numbers of Tregs in the spleen and lymph nodes. LKB1, primarily known for activating AMPK and modulating mitochondrial metabolism, appears crucial for the colonisation of NLT by Tregs. Further analysis revealed the absence of the mature tissue Treg precursors in the spleen of cKO mice, suggesting a block of tissue Treg differentiation in the absence of LKB1.Recent advances, such as the SCENITH technique, allow the study of the metabolism of rare cells by measuring protein translation as an indicator of energy consumption by flow cytometry. However, this technique traditionally requires cells to be cultured ex vivo or in vitro, which can alter their metabolism. To address this issue, an innovative method derived from SCENITH was implemented to investigate the cellular metabolism of T cells in the spleen and lungs at steady state. Compared to classical SCENITH, this new technique also helps improve cell viability, in particular for Tregs. Results obtained with the in vivo SCENITH revealed that conventional T cells and Tregs share similar metabolic profiles in the spleen and lungs. Notably, lung T cell metabolism relies mainly on oxidative phosphorylation at steady state, while spleen T cells also utilise glycolysis. Additionally, maintaining Foxp3 expression in Tregs is influenced by metabolic inhibitors affecting protein translation and energy availability. Our findings highlight the role of LKB1 in the differentiation and colonisation of tissue Tregs and underscore the importance of metabolic adaptation in tissue Treg differentiation. The new in vivo SCENITH technique may provide valuable insights to assess the metabolic status of rare T cells in their natural environments
Roake, Justin Alan. „Studies on the properties and migration of non-lymphoid dendritic cells“. Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317810.
Der volle Inhalt der QuelleBücher zum Thema "Non-lymphoid organs"
Smedby, Karin Ekström, Mads Melbye und Hans-Olov Adami. Non-Hodgkin Lymphoma. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190676827.003.0027.
Der volle Inhalt der QuelleBlaser, Annika Reintam, und Adam M. Deane. Normal physiology of the gastrointestinal system. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0172.
Der volle Inhalt der QuelleAlbert, Tyler J., und Erik R. Swenson. The blood cells and blood count. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0265.
Der volle Inhalt der QuelleBuchteile zum Thema "Non-lymphoid organs"
Rao, Abdul S., Justin A. Roake, Christian P. Larsen, Deborah F. Hankins, Peter J. Morris und Jonathan M. Austyn. „Isolation of Dendritic Leukocytes from Non-Lymphoid Organs“. In Advances in Experimental Medicine and Biology, 507–12. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2930-9_85.
Der volle Inhalt der QuelleWalker, Brian R. „Modulation of glucocorticoid activity by metabolism of steroids in non-lymphoid organs“. In Steroid Hormones and the T-Cell Cytokine Profile, 71–99. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0931-0_4.
Der volle Inhalt der QuelleKirsch, Brian James, Shu-Jyuan Chang, Michael James Betenbaugh und Anne Le. „Non-Hodgkin Lymphoma Metabolism“. In The Heterogeneity of Cancer Metabolism, 103–16. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65768-0_7.
Der volle Inhalt der QuelleAndrabi, Syedah Asma, Nawab Nashiruddullah, Shafiqur Rahman, Dawoud Aamir und afrin Ara Ahmed. „IMPORTANT NON-ONCOGENIC IMMUNO SUPPRESSIVE VIRAL DISEASES OF CHICKENS“. In Futuristic Trends in Agriculture Engineering & Food Sciences Volume 3 Book 3, 88–108. Iterative International Publisher, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bcag3p1ch8.
Der volle Inhalt der QuelleWoodhouse, Andrew. „Case 38“. In Oxford Case Histories in Infectious Diseases and Microbiology, herausgegeben von Andrew Woodhouse, 261–66. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198846482.003.0038.
Der volle Inhalt der QuelleSepulveda, Antonia R. „Mucosa-Associated Lymphoid Tissue Lymphomas“. In Gastrointestinal Oncology, 803–11. Oxford University PressNew York, NY, 2003. http://dx.doi.org/10.1093/oso/9780195133721.003.0066.
Der volle Inhalt der QuelleNaresh, Kikkeri N. „Gastrointestinal lymphomas“. In Oxford Textbook of Medicine, herausgegeben von Jack Satsangi, 2892–902. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0301.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Non-lymphoid organs"
Rosenbluth, Michael J., Wilbur A. Lam und Daniel A. Fletcher. „Contribution of Cell Mechanics to Acute Leukemia“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59881.
Der volle Inhalt der Quelle