Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Non-local denoising filter“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Non-local denoising filter" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Non-local denoising filter"
NamAnh, Dao. „Image Denoising by Addaptive Non-Local Bilatetal Filter“. International Journal of Computer Applications 99, Nr. 12 (20.08.2014): 4–10. http://dx.doi.org/10.5120/17423-8275.
Der volle Inhalt der QuelleChoudhary, Nidhi, Anant Singh und Siddharth Srivastava. „Image Denoising using Improved Non-Local Means Filter“. Journal of Electronic Design Engineering 6, Nr. 2 (24.07.2020): 15–18. http://dx.doi.org/10.46610/joede.2020.v06i02.003.
Der volle Inhalt der QuelleJudson, Matt, Troy Viger und Hyeona Lim. „Efficient and Robust Non-Local Means Denoising Methods for Biomedical Images“. ITM Web of Conferences 29 (2019): 01003. http://dx.doi.org/10.1051/itmconf/20192901003.
Der volle Inhalt der QuelleTang, Song Yuan. „A Non-Local Image Denoising Technique Using Adaptive Filter Parameter“. Applied Mechanics and Materials 556-562 (Mai 2014): 4839–42. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.4839.
Der volle Inhalt der QuelleReddy, Kamireddy Rasool, Madhava Rao Ch und Nagi Reddy Kalikiri. „Performance Assessment of Edge Preserving Filters“. International Journal of Information System Modeling and Design 8, Nr. 2 (April 2017): 1–29. http://dx.doi.org/10.4018/ijismd.2017040101.
Der volle Inhalt der QuelleWang, Gaihua, Yang Liu, Wei Xiong und Yan Li. „An improved non-local means filter for color image denoising“. Optik 173 (November 2018): 157–73. http://dx.doi.org/10.1016/j.ijleo.2018.08.013.
Der volle Inhalt der QuelleBen Said, Ahmed, Rachid Hadjidj, Kamal Eddine Melkemi und Sebti Foufou. „Multispectral image denoising with optimized vector non-local mean filter“. Digital Signal Processing 58 (November 2016): 115–26. http://dx.doi.org/10.1016/j.dsp.2016.07.017.
Der volle Inhalt der QuelleWu, Hongtao, Lei Jia, Ying Meng, Xiao Liu und Jinhui Lan. „A Novel Adaptive Non-Local Means-Based Nonlinear Fitting for Visibility Improving“. Symmetry 10, Nr. 12 (11.12.2018): 741. http://dx.doi.org/10.3390/sym10120741.
Der volle Inhalt der QuelleLIU Qiao-hong, 刘巧红, 李斌 LI Bin und 林敏 LIN Min. „Image denoising with dual-directional filter bank GSM model and non-local mean filter“. Optics and Precision Engineering 22, Nr. 10 (2014): 2806–14. http://dx.doi.org/10.3788/ope.20142210.2806.
Der volle Inhalt der QuelleJoshi, Nikita, Sarika Jain und Amit Agarwal. „Discrete Total Variation-Based Non-Local Means Filter for Denoising Magnetic Resonance Images“. Journal of Information Technology Research 13, Nr. 4 (Oktober 2020): 14–31. http://dx.doi.org/10.4018/jitr.2020100102.
Der volle Inhalt der QuelleDissertationen zum Thema "Non-local denoising filter"
Almahdi, Redha A. „Recursive Non-Local Means Filter for Video Denoising“. University of Dayton / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1481033972368771.
Der volle Inhalt der QuelleKaram, Christina Maria. „Acceleration of Non-Linear Image Filters, and Multi-Frame Image Denoising“. University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1575976497271633.
Der volle Inhalt der QuelleGuillemot, Thierry. „Méthodes et structures non locales pour la restaurationd'images et de surfaces 3D“. Thesis, Paris, ENST, 2014. http://www.theses.fr/2014ENST0006/document.
Der volle Inhalt der QuelleIn recent years, digital technologies allowing to acquire real world objects or scenes have been significantly improved in order to obtain high quality datasets. However, the acquired signal is corrupted by defects which can not be rectified materially and require the use of adapted restoration methods. Until the middle 2000s, these approaches were only based on a local process applyed on the damaged signal. With the improvement of computing performance, the neighborhood used by the filter has been extended to the entire acquired dataset by exploiting their self-similar nature. These non-local approaches have mainly been used to restore regular and structured data such as images. But in the extreme case of irregular and unstructured data as 3D point sets, their adaptation is few investigated at this time. With the increase amount of exchanged data over the communication networks, new non-local methods have recently been proposed. These can improve the quality of the restoration by using an a priori model extracted from large data sets. However, this kind of method is time and memory consuming. In this thesis, we first propose to extend the non-local methods for 3D point sets by defining a surface of points which exploits their self-similar of the point cloud. We then introduce a new flexible and generic data structure, called the CovTree, allowing to learn the distribution of a large set of samples with a limited memory capacity. Finally, we generalize collaborative restoration methods applied to 2D and 3D data by using our CovTree to learn a statistical a priori model from a large dataset
Juráček, Ivo. „Zabezpečení senzorů - ověření pravosti obrazu“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2020. http://www.nusl.cz/ntk/nusl-432921.
Der volle Inhalt der QuelleVálek, Matěj. „Aproximativní implementace aritmetických operací v obrazových filtrech“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445540.
Der volle Inhalt der QuelleBuchteile zum Thema "Non-local denoising filter"
Aparna, P. L., Rahul G. Waghmare, Deepak Mishra und R. K. Sai Subrahmanyam Gorthi. „Effective Denoising with Non-local Means Filter for Reliable Unwrapping of Digital Holographic Interferometric Fringes“. In Proceedings of 2nd International Conference on Computer Vision & Image Processing, 13–24. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7895-8_2.
Der volle Inhalt der QuelleKumar Sharma, Krishna, Dheeraj Gurjar, Monika Jyotyana und Vinod Kumari. „Denoising of Brain MRI Images Using a Hybrid Filter Method of Sylvester-Lyapunov Equation and Non Local Means“. In Smart Innovations in Communication and Computational Sciences, 495–505. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2414-7_46.
Der volle Inhalt der QuelleRabbouch, Hana, Othman Ben Messaoud und Foued Saâdaoui. „Multi-scaled Non-local Means Parallel Filters for Medical Image Denoising“. In Algorithms and Architectures for Parallel Processing, 606–13. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60245-1_41.
Der volle Inhalt der QuelleRajagopal, Sivakumar, und Babu Gopal. „Effective and Accurate Diagnosis Using Brain Image Fusion“. In Applications of Deep Learning and Big IoT on Personalized Healthcare Services, 197–217. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2101-4.ch012.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Non-local denoising filter"
Wen-Qiang Feng, Shu-Min Li und Ke-Long Zheng. „A non-local bilateral filter for image denoising“. In 2010 International Conference on Apperceiving Computing and Intelligence Analysis (ICACIA). IEEE, 2010. http://dx.doi.org/10.1109/icacia.2010.5709895.
Der volle Inhalt der QuelleLi, Ming. „An Improved Non-Local Filter for Image Denoising“. In 2009 International Conference on Information Engineering and Computer Science. IEEE, 2009. http://dx.doi.org/10.1109/iciecs.2009.5363902.
Der volle Inhalt der QuelleAl-antari, M. A., M. A. Al-masni, M. Metwally, D. Hussain, E. Valarezo, P. Rivera, G. Gi et al. „Non-local means filter denoising for DEXA images“. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2017. http://dx.doi.org/10.1109/embc.2017.8036889.
Der volle Inhalt der QuelleJoshi, Nikita, Sarika Jain und Amit Agarwal. „Segmentation based non local means filter for denoising MRI“. In 2017 6th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). IEEE, 2017. http://dx.doi.org/10.1109/icrito.2017.8342506.
Der volle Inhalt der QuelleZhan, Yi, Mingyue Ding, Feng Xiao und Xuming Zhang. „An Improved Non-local Means Filter for Image Denoising“. In 2011 International Conference on Intelligent Computation and Bio-Medical Instrumentation (ICBMI). IEEE, 2011. http://dx.doi.org/10.1109/icbmi.2011.5.
Der volle Inhalt der QuelleChen, Runpu, Weidong Yu, Yunkai Deng, Robert Wang, Gang Liu und Yunfeng Shao. „Pyramid non-local mean filter for interferometric phase denoising“. In IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/igarss.2012.6350528.
Der volle Inhalt der QuelleJoshi, Nikita, Sarika Jain und Amit Agarwal. „An improved approach for denoising MRI using non local means filter“. In 2016 2nd International Conference on Next Generation Computing Technologies (NGCT). IEEE, 2016. http://dx.doi.org/10.1109/ngct.2016.7877492.
Der volle Inhalt der QuelleBaqar, Mohtashim, Sian Lun Lau und Mansoor Ebrahim. „GMSD-based Perceptually Motivated Non-local Means Filter for Image Denoising“. In 2019 IEEE International Symposium on Haptic, Audio and Visual Environments and Games (HAVE). IEEE, 2019. http://dx.doi.org/10.1109/have.2019.8921188.
Der volle Inhalt der QuelleAlmahdi, Redha, und Russell C. Hardie. „Recursive non-local means filter for video denoising with Poisson-Gaussian noise“. In 2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS). IEEE, 2016. http://dx.doi.org/10.1109/naecon.2016.7856822.
Der volle Inhalt der QuelleFu, Bo, Ruizi Wang, Yi Li und Chengdi Xing. „Non-Local Directional-Guided Filter for Impulse-Gaussian Mixed Noise Image Denoising“. In 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). IEEE, 2019. http://dx.doi.org/10.1109/iske47853.2019.9170405.
Der volle Inhalt der Quelle