Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Non-Euclidean spaces“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Non-Euclidean spaces" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Non-Euclidean spaces"
Lally, Nick, und Luke Bergmann. „Mapping dynamic, non-Euclidean spaces“. Abstracts of the ICA 1 (15.07.2019): 1–2. http://dx.doi.org/10.5194/ica-abs-1-204-2019.
Der volle Inhalt der QuelleCourrieu, Pierre. „Function approximation on non-Euclidean spaces“. Neural Networks 18, Nr. 1 (Januar 2005): 91–102. http://dx.doi.org/10.1016/j.neunet.2004.09.003.
Der volle Inhalt der QuelleNovello, Tiago, Vincius da Silva und Luiz Velho. „Global illumination of non-Euclidean spaces“. Computers & Graphics 93 (Dezember 2020): 61–70. http://dx.doi.org/10.1016/j.cag.2020.09.014.
Der volle Inhalt der QuelleUrban, Philipp, Mitchell R. Rosen, Roy S. Berns und Dierk Schleicher. „Embedding non-Euclidean color spaces into Euclidean color spaces with minimal isometric disagreement“. Journal of the Optical Society of America A 24, Nr. 6 (09.05.2007): 1516. http://dx.doi.org/10.1364/josaa.24.001516.
Der volle Inhalt der QuelleBORELL, STEFAN, und FRANK KUTZSCHEBAUCH. „NON-EQUIVALENT EMBEDDINGS INTO COMPLEX EUCLIDEAN SPACES“. International Journal of Mathematics 17, Nr. 09 (Oktober 2006): 1033–46. http://dx.doi.org/10.1142/s0129167x06003795.
Der volle Inhalt der QuelleBorisov, A. V., und I. S. Mamaev. „Rigid body dynamics in non-Euclidean spaces“. Russian Journal of Mathematical Physics 23, Nr. 4 (Oktober 2016): 431–54. http://dx.doi.org/10.1134/s1061920816040026.
Der volle Inhalt der QuelleCapecchi, Danilo, und Giuseppe Ruta. „Beltrami's continuum mechanics in non-Euclidean spaces“. PAMM 15, Nr. 1 (Oktober 2015): 703–4. http://dx.doi.org/10.1002/pamm.201510341.
Der volle Inhalt der QuelleMidler, Jean-Claude. „Non-Euclidean Geographic Spaces: Mapping Functional Distances“. Geographical Analysis 14, Nr. 3 (03.09.2010): 189–203. http://dx.doi.org/10.1111/j.1538-4632.1982.tb00068.x.
Der volle Inhalt der QuelleDörfel, B.-D. „Non-commutative Euclidean structures in compact spaces“. Journal of Physics A: Mathematical and General 34, Nr. 12 (19.03.2001): 2583–94. http://dx.doi.org/10.1088/0305-4470/34/12/306.
Der volle Inhalt der QuelleSchwarz, Binyamin, und Abraham Zaks. „Non-Euclidean motions in projective matrix spaces“. Linear Algebra and its Applications 137-138 (August 1990): 351–61. http://dx.doi.org/10.1016/0024-3795(90)90134-x.
Der volle Inhalt der QuelleDissertationen zum Thema "Non-Euclidean spaces"
Garcia, Domingo Josep Lluís. „Real analysis in non-euclidean spaces: trees and spaces of homogeneous type“. Doctoral thesis, Universitat de Barcelona, 2003. http://hdl.handle.net/10803/2124.
Der volle Inhalt der QuelleEl contenido de esta tesis se enmarca dentro del Análisis Real. En particular, trata del estudio de ciertos problemas de la teoría de pesos, (una referencia clásica sobre esta teoría es el libro de J. García-Cuerva y J.L. Rubio de Francia [GR]). Nosotros consideramos, por este orden, tres problemas clásicos diferentes, que abarcan buena parte de la teoría de pesos:
(i) Estudio de las inclusiones para espacios con pesos y acotación de operadores integrales entre estos espacios.
(ii) Estudio de propiedades funcionales de espacios con pesos asociados a una reordenada decreciente de funciones.
(iii) Estudio de la acotación de operadores maximales asociados a regiones de aproximación entre espacios con pesos.
Todos estos problemas han sido tratados extensamente en la literatura. Nuestro enfoque ha sido el de extender estos resultados a espacios con la mínima estructura necesaria. Concretamente, hemos trabajado respectivamente en cada capítulo en los siguientes contextos:
(i) Espacios de medida arbitrarios.
(ii) Árboles.
(iii) Espacios de tipo homogéneo.
Puesto que un árbol puede ser a su vez un espacio de medida, o puesto que su frontera puede ser un espacio de tipo homogéneo, algunos resultados para espacios de medida y espacios de tipo homogéneo han sido aplicados a los árboles (véanse los capítulos primero y tercero). En cambio, en el capítulo segundo trabajamos exclusivamente en árboles.
Los espacios donde hemos desarrollado nuestra teoría no poseen, en general, ningún tipo de estructura algebraica. Por tanto, todos los resultados persiguen un objetivo común: la extensión de la teoría de pesos a espacios no euclidianos.
Vincent, Hugh. „Using geometric algebra to interactively model the geometry of Euclidean and non-Euclidean spaces“. Thesis, Middlesex University, 2007. http://eprints.mdx.ac.uk/6750/.
Der volle Inhalt der QuelleSchötz, Christof [Verfasser], und Enno [Akademischer Betreuer] Mammen. „The Fréchet Mean and Statistics in Non-Euclidean Spaces / Christof Schötz ; Betreuer: Enno Mammen“. Heidelberg : Universitätsbibliothek Heidelberg, 2021. http://d-nb.info/1232409782/34.
Der volle Inhalt der QuelleHaxhi, Karen Kleinschmidt. „The euclidean and hyperbolic geometry underlying M.C. Escher's regular division designs /“. View abstract, 1998. http://library.ctstateu.edu/ccsu%5Ftheses/1491.html.
Der volle Inhalt der QuelleThesis advisor: Dr. Jeffrey McGowan. "...in partial fulfillment of the requirements for the degree of Master of Science." Includes bibliographical references (leaves [78-79]).
Senger, Steven Iosevich Alex. „Erdős distance problem in the hyperbolic half-plane“. Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/5341.
Der volle Inhalt der QuelleRippy, Scott Randall. „Applications of hyperbolic geometry in physics“. CSUSB ScholarWorks, 1996. https://scholarworks.lib.csusb.edu/etd-project/1099.
Der volle Inhalt der QuelleBobuľa, Matej. „Neeuklidovské vykreslování ve VR“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445563.
Der volle Inhalt der QuelleBarfield, Naren Anthony. „Integrated artworks : theory and practice in relation to printmaking and computers, and the influence of 'non-Euclidean geometry' and the 'fourth dimension' on developments in twentieth-century pictoral space“. Thesis, Open University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299913.
Der volle Inhalt der QuelleDhinagar, Nikhil J. „Non-Invasive Skin Cancer Classification from Surface Scanned Lesion Images“. Ohio University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1366384987.
Der volle Inhalt der QuelleSchmidt, Elvis. „O ensino de geometria projetiva na educação básica: uma proposta para apreensão do conhecimento do mundo tridimensional“. Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1371.
Der volle Inhalt der QuelleNa busca por uma melhor representação da realidade tridimensional, as Geometrias não- Euclidianas oferecem uma alternativa ao euclidianismo clássico e um dos destaques e a Geometria Projetiva. Assim, o objetivo deste trabalho e, através de ilustrações, contribuir para a assimilação de definições como perspectiva, projeção e o principio da dualidade. E, a partir de resultados importantes como o Teorema de Desargues, o Teorema de Pappus e o Teorema de Pascal, queremos facilitar a compreensão e a visualização de algumas das técnicas de perspectiva que podem ser adaptadas para o uso na sala de aula pelos professores da Educação B ́ sica. A aplicação de uma oficina de Geometria Projetiva em uma turma do 6o ano do Ensino Fundamental e a avaliação dos resultados revelaram que o tema pode ser desenvolvido de maneira promissora com os estudantes na Educação B ́ sica, obtendo uma melhor compreensão do objeto real e associando-o ao conteúdo matemático envolvido.
In search for a better representation of three-dimensional reality, non-Euclidean Geometries offer an alternative to the classic euclidianism and the Projective Geometry is one of the highlights. The purpose of this word is contribute to the assimilation of definitions such as perspective, projection, and the principle of duality, through illustrations. And, from important results as Desargues’ Theorem, Pappus’ Theorem and Pascal’s Theorem, we want to facilitate understanding and viewing some of the perspective techniques that can be adapted for use in classroom by Basic Education teachers. The application of a workshop of Projective Geometry in a class of 6th grade of elementary school and the evaluation of the results revealed that the theme can be developed in a promising way with students in basic education, getting a better comprehension of the real object and associating it to the mathematical content involved.
Bücher zum Thema "Non-Euclidean spaces"
Borwein, Jonathan M. Convex functions: Constructions, characterizations and counterexamples. Cambridge: Cambridge University Press, 2010.
Den vollen Inhalt der Quelle findenJeremy, Gray. Ideas of space: Euclidean, non-Euclidean, and relativistic. 2. Aufl. Oxford: Clarendon Press, 1989.
Den vollen Inhalt der Quelle findenOuter billiards on kites. Princeton, N.J: Princeton University Press, 2009.
Den vollen Inhalt der Quelle findenAravinda, C. S. Geometry, groups and dynamics: ICTS program, groups, geometry and dynamics, December 3-16, 2012, CEMS, Kumaun University, Almora, India. Providence, Rhode Island: American Mathematical Society, 2015.
Den vollen Inhalt der Quelle findenBolyai, János. Appendix, the theory of space. Amsterdam: North-Holland, 1987.
Den vollen Inhalt der Quelle findenAppendix, the theory of space. Budapest: Akadémiai Kiadó, 1987.
Den vollen Inhalt der Quelle findenRozenfelʹd, Boris Abramovich. A history of non-Euclidean geometry: Evolution of the concept of a geometric space. New York: Springer-Verlag, 1988.
Den vollen Inhalt der Quelle findenJeremy, Gray. János Bolyai, non-Euclidean geometry, and the nature of space. Cambridge, Mass: Burndy Library, 2004.
Den vollen Inhalt der Quelle findenAh istory of non-euclidean geometry: Evolution of the concept of a geometric space. New York: Springer-Verlag, 1987.
Den vollen Inhalt der Quelle findenTazzioli, Rossana. Beltrami e i matematici "relativisti": La meccanica in spazi curvi nella seconda metà dell'Ottocento. Bologna: Pitagora, 2000.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Non-Euclidean spaces"
Ren, Wei, Yoan Miche, Ian Oliver, Silke Holtmanns, Kaj-Mikael Bjork und Amaury Lendasse. „On Distance Mapping from non-Euclidean Spaces to Euclidean Spaces“. In Lecture Notes in Computer Science, 3–13. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66808-6_1.
Der volle Inhalt der QuelleGorelik, E., J. Lindenstrauss und M. Rudelson. „Uniform Non-Equivalence between Euclidean and Hyperbolic Spaces“. In Geometric Aspects of Functional Analysis, 103–9. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9090-8_10.
Der volle Inhalt der QuelleHuckemann, Stephan F. „(Semi-)Intrinsic Statistical Analysis on Non-Euclidean Spaces“. In Contributions to Statistics, 103–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11149-0_7.
Der volle Inhalt der QuelleCasey, Stephen D. „Harmonic Analysis in Non-Euclidean Spaces: Theory and Application“. In Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science, 565–601. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55556-0_6.
Der volle Inhalt der QuelleMiche, Yoan, Ian Oliver, Wei Ren, Silke Holtmanns, Anton Akusok und Amaury Lendasse. „Practical Estimation of Mutual Information on Non-Euclidean Spaces“. In Lecture Notes in Computer Science, 123–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66808-6_9.
Der volle Inhalt der QuelleBhattacharya, Subhrajit, Robert Ghrist und Vijay Kumar. „Multi-robot Coverage and Exploration in Non-Euclidean Metric Spaces“. In Springer Tracts in Advanced Robotics, 245–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36279-8_15.
Der volle Inhalt der QuelleBhattacharya, Rabi, Lizhen Lin und Victor Patrangenaru. „Fréchet Means and Nonparametric Inference on Non-Euclidean Geometric Spaces“. In Springer Texts in Statistics, 303–15. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-4032-5_12.
Der volle Inhalt der QuelleHuckemann, Stephan, und Benjamin Eltzner. „Statistical Methods Generalizing Principal Component Analysis to Non-Euclidean Spaces“. In Handbook of Variational Methods for Nonlinear Geometric Data, 317–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-31351-7_10.
Der volle Inhalt der QuelleDostert, Maria, und Alexander Kolpakov. „Kissing Number in Non-Euclidean Spaces of Constant Sectional Curvature“. In Trends in Mathematics, 574–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83823-2_92.
Der volle Inhalt der QuelleSaxena, Chandni, Tianyu Liu und Irwin King. „A Survey of Graph Curvature and Embedding in Non-Euclidean Spaces“. In Neural Information Processing, 127–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63833-7_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Non-Euclidean spaces"
Oxburgh, Stephen, Chris D. White, Georgios Antoniou, Lena Mertens, Christopher Mullen, Jennifer Ramsay, Duncan McCall und Johannes Courtial. „Windows into non-Euclidean spaces“. In SPIE Optical Engineering + Applications, herausgegeben von G. Groot Gregory und Arthur J. Davis. SPIE, 2014. http://dx.doi.org/10.1117/12.2061418.
Der volle Inhalt der QuelleZeyen, Max, Tobias Post, Hans Hagen, James Ahrens, David Rogers und Roxana Bujack. „Color Interpolation for Non-Euclidean Color Spaces“. In 2018 IEEE Scientific Visualization Conference (SciVis). IEEE, 2018. http://dx.doi.org/10.1109/scivis.2018.8823597.
Der volle Inhalt der Quelle„CLASSIFICATION USING HIGH ORDER DISSIMILARITIES IN NON-EUCLIDEAN SPACES“. In International Conference on Pattern Recognition Applications and Methods. SciTePress - Science and and Technology Publications, 2012. http://dx.doi.org/10.5220/0003779503060309.
Der volle Inhalt der QuelleDyachkov, V. V., Y. A. Zaripova und A. V. Yushkov. „Experimental Foundations of Nuclear Physics in Non-Euclidean Spaces“. In International Symposium on Exotic Nuclei EXON-2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811209451_0055.
Der volle Inhalt der QuelleSonghao, Zhu, Hu Juanjuan und Sun Wei. „Image classification using three order statistics in non-Euclidean spaces“. In 2013 25th Chinese Control and Decision Conference (CCDC). IEEE, 2013. http://dx.doi.org/10.1109/ccdc.2013.6560896.
Der volle Inhalt der QuelleChen, Lingling, Songhao Zhu, Zhuofan Li und Juanjuan Hu. „Image classification via learning dissimilarity measure in non-euclidean spaces“. In 2014 33rd Chinese Control Conference (CCC). IEEE, 2014. http://dx.doi.org/10.1109/chicc.2014.6895718.
Der volle Inhalt der QuelleBiggs, James D. „Quadratic Hamiltonians on non-Euclidean spaces of arbitrary constant curvature“. In 2013 European Control Conference (ECC). IEEE, 2013. http://dx.doi.org/10.23919/ecc.2013.6669107.
Der volle Inhalt der QuelleHu, Juanjuan, Songhao Zhu und Baojie Fan. „Improving Tagging Quality via Learning Dissimilarity Measure in Non-Euclidean Spaces“. In 2013 2nd IAPR Asian Conference on Pattern Recognition (ACPR). IEEE, 2013. http://dx.doi.org/10.1109/acpr.2013.112.
Der volle Inhalt der QuelleChen, Lingling, und Songhao Zhu. „Improving Image Classification Quality Via Dissimilarity Measure In Non-Euclidean Spaces“. In 2015 International Symposium on Computers and Informatics. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/isci-15.2015.91.
Der volle Inhalt der QuelleGhosh, S., und D. Roy. „A Family of Runge-Kutta Based Explicit Methods for Rotational Dynamics“. In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41396.
Der volle Inhalt der Quelle