Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Non-Embryonic development“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Non-Embryonic development" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Non-Embryonic development"
Hanlon, Caitlin D., und Deborah J. Andrew. „Drosophila FoxL1 non-autonomously coordinates organ placement during embryonic development“. Developmental Biology 419, Nr. 2 (November 2016): 273–84. http://dx.doi.org/10.1016/j.ydbio.2016.09.007.
Der volle Inhalt der QuelleYamauchi, Yasuhiro, Jeffrey A. Shaman und W. Steven Ward. „Non-genetic contributions of the sperm nucleus to embryonic development“. Asian Journal of Andrology 13, Nr. 1 (18.10.2010): 31–35. http://dx.doi.org/10.1038/aja.2010.75.
Der volle Inhalt der QuelleSilva, Elisa Sant'Anna Monteiro da, José Carlos de Figueiredo Pantoja, José Nicolau Próspero Puoli und Cezinande Meira. „Ultrasonography of the conceptus development from days 15 to 60 of pregnancy in non-cyclic recipient mares“. Ciência Rural 45, Nr. 3 (März 2015): 512–18. http://dx.doi.org/10.1590/0103-8478cr20140517.
Der volle Inhalt der QuelleAl-Roubaie, Sarah, Espen D. Jahnsen, Masud Mohammed, Caitlin Henderson-Toth und Elizabeth A. V. Jones. „Rheology of embryonic avian blood“. American Journal of Physiology-Heart and Circulatory Physiology 301, Nr. 6 (Dezember 2011): H2473—H2481. http://dx.doi.org/10.1152/ajpheart.00475.2011.
Der volle Inhalt der QuelleCoomans, August, Gaëtan Borgonie und Kim Jacobsen. „Embryonic lineage evolution in nematodes“. Nematology 2, Nr. 1 (2000): 65–69. http://dx.doi.org/10.1163/156854100508908.
Der volle Inhalt der QuelleRossant, Janet. „Stem cells and lineage development in the mammalian blastocyst“. Reproduction, Fertility and Development 19, Nr. 1 (2007): 111. http://dx.doi.org/10.1071/rd06125.
Der volle Inhalt der QuelleZhou, Chune. „Knockdown of Novel lncRNA TCONS_00028652 in Zebrafish Affects Embryonic Vasculature Development“. International Journal of Agriculture and Biology 25, Nr. 04 (01.04.2021): 831–37. http://dx.doi.org/10.17957/ijab/15.1735.
Der volle Inhalt der QuelleRoeszler, Kelly. „Analysis of the long non-coding RNA, MHM, in avian embryonic development“. Developmental Biology 356, Nr. 1 (August 2011): 154. http://dx.doi.org/10.1016/j.ydbio.2011.05.186.
Der volle Inhalt der QuelleLi, An und Zhang. „The Dynamic 3D Genome in Gametogenesis and Early Embryonic Development“. Cells 8, Nr. 8 (29.07.2019): 788. http://dx.doi.org/10.3390/cells8080788.
Der volle Inhalt der QuelleOhazama, A., S. A. C. Modino, I. Miletich und P. T. Sharpe. „Stem-cell-based Tissue Engineering of Murine Teeth“. Journal of Dental Research 83, Nr. 7 (Juli 2004): 518–22. http://dx.doi.org/10.1177/154405910408300702.
Der volle Inhalt der QuelleDissertationen zum Thema "Non-Embryonic development"
Vasilopoulos, Georgios. „Local and non-local mathematical modelling of signalling during embryonic development“. Thesis, Heriot-Watt University, 2012. http://hdl.handle.net/10399/2574.
Der volle Inhalt der QuelleTobias, Santos Vitória. „A Transcriptome-Level Comparison of Independently Evolved Non-Embryonic Development in Different Species of Styelidae (Tunicata)“. Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS401.pdf.
Der volle Inhalt der QuelleTunicates (Chordata) are the closest relative to vertebrates able to undergo whole-body regeneration (WBR) upon severe injury or as part of their asexual life cycle. In different tunicate species, WBR starts from various non-homologous epithelia or mesenchymal cells, which either home adult stem cells or undergo de/transdifferentiation. The cell dynamics and the molecular players behind WBR are still elusive. To better understand differences and commonalities between independently evolved WBRs, I focused on the family of Styelidae, in which I selected two tunicate laboratory-reared species that independently evolved the capacity of WBR: Botryllus schlosseri and Polyandrocarpa zorritensis. Taking advantage of our previous morphological characterization of P. zorritensis WBR, I adapted a live-staining technique that allowed me to obtain the transcriptomic profile of seven informative stages of WBR in this species. Differential gene expression analysis revealed clusters of genes associated with each stage, from WBR initiation to the onset of morphogenesis. I’m now comparing these results with published and in-house RNAseq datasets of WBR in other species of tunicate (B. schlosseri, B. leachii, and P. misakiensis) taking advantage of available transcriptomic data as well as high quality genome data recently obtained by our team. This started to lead to the identification of orthologous genes sharing a dynamic expression during convergently acquired WBR. Further exploration of the expression pattern of these genes across species will allow us to identify common and different mechanisms underlying the plastic evolution of WBR in chordates
Scelzo, Marta. „Vasal budding : characterization of a new form of non-embryonic development in the colonial ascidian Polyandrocarpa zorritensis“. Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS467.
Der volle Inhalt der QuelleColonial tunicates can generate a new adult body by asexual reproduction and whole body regeneration, two forms of non-embryonic development (NED). Different modes of NED are defined depending on the nature of the organogenetic tissues. Interestingly, this capacity is scattered across the sub-phylum, with species able of NED (colonial) closely related to species where regenerative capabilities are absent or reduced (solitary). This suggests that NED has been acquired or lost several times among the group. In recent phylogeny of family Styelidae, the colonial species Polyandrocarpa zorritensis seems to have acquired independently the capability of NED. During my PhD, I characterized the NED in this species, identifying the stages of NED under laboratory conditions and the tissues/cells involved. By histological and ultrastructural analyses, I highlighted the participation to NED of vascular epithelium and mesenchymal cells. This type of NED was undescribed before, and we decided to call it “vasal budding”. During the early stages of vasal budding I observed undifferentiated mesenchymal cells cluster and proliferate at the regenerative point; their distribution varies during vasal budding, increasing in the developing areas. I described the mesenchymal cells, identifying in the proliferating cells an undifferentiated morphotype, the hemoblasts, known as putative stem cells in other colonial ascidian. In addition, I defined the presence of a dormant stage, the spherule, in the life cycle of P. zorritensis and I characterized the environmental variable and the molecular mechanisms involved in dormancy in this species and in a distantly related species, Clavelina lepadiformis
Messineo, Stefania. „Development of a gene targeting strategy (Recombinase-Mediated CAssette Exchange) to generate cellular models of MYH9-related disease“. Doctoral thesis, Università degli studi di Trieste, 2011. http://hdl.handle.net/10077/4603.
Der volle Inhalt der QuelleLa malattia MYH9-correlata (MYH9-RD) è una malattia autosomica dominante, caratterizzata da trombocitopenia congenita con piastrine di grandi dimensioni, aggregati nei neutrofili, sordità progressiva, cataratta e nefropatia. La MYH9-RD è causata da mutazioni nel gene MYH9 che codifica per la catena pesante della miosina non muscolare di classe II (miosina-9). I meccanismi patogenetici che causano questa malattia non sono ancora stati chiaramente identificati e il loro studio è complicato dalla mancanza di adeguati modelli cellulari e animali. Lo scopo di questo progetto è stato di generare un modello in vitro per studiare la funzione della miosina-9 e il ruolo di due mutazioni che incorrono nel gene MYH9: la R702C e la R1933X, che correlano rispettivamente con un fenotipo grave e lieve. Per questo motivo abbiamo deciso di manipolare le cellule staminali embrionali murine (ES), che sono pluripotenti e possono essere differenziate in diversi linee cellulari, compresa la linea megacariocitica. Per ingegnerizzare queste cellule ad alta efficienza abbiamo messo a punto una strategia nota come "scambio di cassette mediato da ricombinasi" (RMCE). Dopo l'integrazione di una cassetta fiancheggiata da siti FRT (sequenze di riconoscimento per l'enzima flippasi), il sistema ci ha permesso di scambiare diverse sequenze di DNA in presenza dell'enzima flippasi. Quindi il primo esone codificante del gene Myh9 è stato distrutto dall'inserimento, mediante ricombinazione omologa, di una cassetta fiancheggiata da due siti FRT contenente il gene reporter Beta-galattosidasi. Successivamente abbiamo scambiato questa cassetta con altre tre contenenti il cDNA Myh9 murino wild-type e i due mutati, generando i cloni ES che esprimono queste sequenze esogene sotto il controllo del promotore Myh9 endogeno. La caratterizzazione a livello dell'RNA e delle proteine di questi cloni ci ha portato a stabilire che gli alleli mutati e wild-type sono espressi allo stesso livello, suggerendo che le manipolazioni genetiche non interferiscono con i corretti meccanismi fisiologici di trascrizione e traduzione del gene Myh9. Tuttavia, mediante Western Blot abbiamo mostrato che la proteina miosina-9 è espressa a livello inferiore nei cloni mutati rispetto ai wild-type. Le analisi di immunofluorescenza per indagare la presenza di aggregati di miosina-9, che sono sempre presenti nei neutrofili di pazienti, non hanno rilevato alcuna variazione nella distribuzione della miosina-9, fatta eccezione per un segnale di intensità minore. Questi risultati indicano che, nonostante l'espressione dell'allele ingegnerizzato sia normale, la proteina mutata sembra essere degradata, almeno nelle cellule ES murine, determinando un effetto di aploinsufficienza delle mutazioni R702C e R1933X. Per accertare la loro pluripotenza, abbiamo differenziato dei cloni ES in corpi embrioidi e cardiomiociti, senza rivelare alcuna differenza tra i cloni mutanti e i wild-type. Dal momento che una caratteristica congenita dei pazienti MYH9-RD è la macrotrombocitopenia, abbiamo sviluppato un protocollo per differenziare i cloni mutati ES in megacariociti per indagare come le mutazioni in MYH9 portino a una impropria produzione di piastrine. In conclusione, per studiare la MYH9-RD abbiamo sviluppato una strategia che ci ha permesso di esprimere sequenze di interesse in cellule ES di topo sotto il controllo del promotore Myh9 endogeno. La differenziazione in vitro di queste cellule ci permetterà di studiare l'effetto delle mutazioni nel corso della megacariocitopoiesi. Inoltre, poiché le cellule ES possono anche essere usate per generare modelli animali, questa strategia ci permetterà di testare diverse ipotesi patogenetiche in vitro, prima di passare a studi in vivo.
XXIII Ciclo
1982
Yunusov, Dinar. „Characterization of HIPSTR highlights the heterogeneous expression pattern of lncRNAs in human embryos and stable cell lines“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-22082016-083421/.
Der volle Inhalt der QuelleTem sido cada vez mais reconhecido que a transcrição dos genomas eucarióticos produz múltiplos transcritos novos, anteriormente não detectados e ainda não caracterizados, sendo que a maioria é constituida de RNAs não-codificantes longos (lncRNAs) regulatórios. Estudos recentes estão focados principalmente nos lncRNAs transcritos de regiões intergênicas e enhancers; assim, o grupo dos lncRNAs antisenso permanece o menos estudado de todos. Ao mesmo tempo, a transcrição antisenso ocorre em até 74% dos loci de genes humanos, frequentemente - a partir da fita oposta de genes que codificam proteínas envolvidas na regulação da transcrição. No presente trabalho, nós identificamos HIPSTR (Heterogeneously expressed from the Intronic Plus Strand of the TFAP2A-locus RNA), um lncRNA novo conservado que é transcrito a partir da fita antisenso do gene TFAP2A. Ao contrário do anteriormente relatado para os lncRNAs antisenso, a expressão de HIPSTR não está correlacionada com a expressão do gene da fita oposta. HIPSTR e TFAP2A são co-expressos em células da crista neural e em trofoblastos derivadas in vitro, mas somente HIPSTR e não TFAP2A está especificamente expresso num subconjunto de células de embriões humanos nos estágios de 8-células e mórula. Mostramos que, semelhante a HIPSTR, a expressão de lncRNAs é mais altamente heterogênea que a expressão de mRNAs em células individuais de embriões humanos em desenvolvimento ou em linhagens estáveis de células. Finalmente, nós demonstramos que a depleção de HIPSTAR em células HEK293 e H1BP, uma linhagem de células tronco embrionárias humanas, afeta predominantemente os níveis de genes envolvidos no início do desenvolvimento do organismo e na diferenciação de células. No conjunto, nós mostramos que a expressão de HIPSTR e de centenas de outros lncRNAs é altamente heterogênea em embriões humanos e linhagens celulares. Usamos HIPSTR para exemplificar a relevância funcional de lncRNAs com padrões de expressão heterogêneos e estágio-de-desenvolvimento específicos.
Mokrani, Sofiane. „Maintenance de la stabilité chromosomique des cellules souches neurales murines au cours du développement et après un stress génotoxique aiguë ou chronique Impaired brain development and behavior of Xlf null mice linked to chromosome instability-induced premature neurogenesis Higher Chromosome Stability in Mouse Embryonic Neural Stem and Progenitor Cells than in Fibroblasts in Response to Acute or Chronic Genotoxic Stress“. Thesis, Institut polytechnique de Paris, 2019. http://www.theses.fr/2019IPPAX010.
Der volle Inhalt der QuellePrenatal exposure to ionizing radiation has been associated with many neurodevelopmental disorders due to the DNA damage induced in neural stem and progenitors cells (NSPC). Thus, genetic stability of NSPC is crucial for brain development and homeostasis. Nevertheless, genomic alterations occurring during development in NSPC may have a potential impact on the physiological neuronal diversity. XLF is a component of the NHEJ (Non-Homologous End-Joining) repair pathway. Here, we show that NSPC from Xlf-/- embryos exhibit increased chromosome instability, leading to premature neurogenesis and consequently neurobehavioral disorders. Using cytogenetic approaches, we compared the chromosome stability of mouse embryonic NSPC and fibroblasts (MEF) exposed to acute (γ-irradiation) or chronic (incorporation of tritiated thymidine into DNA) genotoxic stress. Our results demonstrate the higher capacity of NSPC as compared to MEF to maintain their genomic integrity. We evidenced that NSPC have more efficient DNA repair activity than MEF, allowing them to develop an adaptive response to chronic genotoxic stress. This adaptive response involves XLF and acts together with apoptosis and cell cycle checkpoints to preserve the stability of the genome and to eliminate damaged cells. Altogether, our results provide new insights into the robust DNA damage response in NSPC and highlight the importance of Xlf during brain development
Bing, Xin Y. „Mechanistic Basis for Control of Early Embryonic Development by a 5’ tRNA Fragment“. eScholarship@UMMS, 2019. https://escholarship.umassmed.edu/gsbs_diss/1035.
Der volle Inhalt der QuelleLefebvre, Fabio Alexis. „Approches de fractionnement biochimique couplé à la transcriptomique dans l’étude systématique de la localisation subcellulaire et extracellulaire des ARNs“. Thèse, 2018. http://hdl.handle.net/1866/21186.
Der volle Inhalt der QuelleBücher zum Thema "Non-Embryonic development"
Coulson, Graeme, und Mark Eldridge, Hrsg. Macropods. CSIRO Publishing, 2010. http://dx.doi.org/10.1071/9780643098183.
Der volle Inhalt der QuelleRuiz-Villalba, Adrián, Nikolaos Frangogiannis und José Maria Pérez-Pomares. Origin and diversity of cardiac fibroblasts: developmental substrates of adult cardiac fibrosis. Herausgegeben von José Maria Pérez-Pomares, Robert G. Kelly, Maurice van den Hoff, José Luis de la Pompa, David Sedmera, Cristina Basso und Deborah Henderson. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198757269.003.0012.
Der volle Inhalt der QuelleBuchteile zum Thema "Non-Embryonic development"
Fu, Qiang, Chuan-Jiang Liu, Zhen-Sheng Zhai, Xu Zhang, Tao Qin und Hong-Wei Zhang. „Single-Cell Non-coding RNA in Embryonic Development“. In Single Cell Biomedicine, 19–32. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0502-3_3.
Der volle Inhalt der QuelleTobita, Kimimasa, Jason B. Garrison und Bradley B. Keller. „Differential Effects of Cyclic Stretch on Embryonic Ventricular Cardiomyocyte and Non-Cardiomyocyte Orientation“. In Cardiovascular Development and Congenital Malformations, 177–79. Malden, Massachusetts, USA: Blackwell Publishing Ltd, 2007. http://dx.doi.org/10.1002/9780470988664.ch44.
Der volle Inhalt der QuelleLatinkic, Branko V. „CCN FAMILY IN EMBRYONIC DEVELOPMENT (NON-MAMMALIAN MODELS)“. In CCN Proteins, 153–65. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2005. http://dx.doi.org/10.1142/9781860946899_0008.
Der volle Inhalt der QuelleDeeming, D. C. „Embryonic development and utilisation of egg components“. In Avian Incubation, 43–53. Oxford University PressOxford, 2001. http://dx.doi.org/10.1093/oso/9780198508106.003.0004.
Der volle Inhalt der QuelleTopilko, P., und D. Meijer. „Transcription Factors that Control Schwann Cell Development and myelination“. In Glial Cell Development basic principles and clinical relevance second edition, 223–44. Oxford University PressOxford, 2001. http://dx.doi.org/10.1093/oso/9780198524786.003.0011.
Der volle Inhalt der QuelleZimmer, Julia, Elisa Degenkolbe, Britt Wildemann und Petra Seemann. „BMP Signaling in Regenerative Medicine“. In Medical Advancements in Aging and Regenerative Technologies, 1–30. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-2506-8.ch001.
Der volle Inhalt der QuelleGranderath, S., und C. Klämbt. „Genetic analysis of gliogenesis in Drosophila“. In Glial Cell Development basic principles and clinical relevance second edition, 244–62. Oxford University PressOxford, 2001. http://dx.doi.org/10.1093/oso/9780198524786.003.0012.
Der volle Inhalt der QuelleHarvey Pough, F., William E. Bemis, Betty Mcguire und Christine M. Janis. „What Is a Vertebrate?“ In Vertebrate Life. Oxford University Press, 2022. http://dx.doi.org/10.1093/hesc/9780197558621.003.0002.
Der volle Inhalt der QuelleBecker, David, und Colin Green. „Gap junction-mediated interactions between cells“. In Cell–Cell Interactions, 47–70. Oxford University PressOxford, 2001. http://dx.doi.org/10.1093/oso/9780199638642.003.0003.
Der volle Inhalt der QuelleLuyten, Frank P. „Mesenchymal Stem Cells In Arthritis“. In Rheumatoid Arthritis, 551–59. Oxford University PressOxford, 2006. http://dx.doi.org/10.1093/oso/9780198566304.003.0043.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Non-Embryonic development"
Moran, Emma C., Pedro M. Baptista, Kenichiro Nishii, David Wasnick, Shay Soker und Jessica L. Sparks. „Expression of Primary Cilia on Liver Stem and Progenitor Cells: Potential Role for Mechanosensing in Liver Development“. In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14122.
Der volle Inhalt der QuelleTan, Hao, Ya Su, Liya Wei, X. Steve Yao, Tongtong Mai und Xu Li. „Non-invasive 3D real time observation of physiological traits during the embryonic development of insects“. In Optics in Health Care and Biomedical Optics IX, herausgegeben von Qingming Luo, Xingde Li, Yuguo Tang, Ying Gu und Dan Zhu. SPIE, 2019. http://dx.doi.org/10.1117/12.2537479.
Der volle Inhalt der QuelleBercha, Frank, Richard Prentki und Caryn Smith. „Prediction of Oil Spill Occurrence Probabilities in the Alaskan Beaufort and Chukchi Seas OCS“. In SNAME 8th International Conference and Exhibition on Performance of Ships and Structures in Ice. SNAME, 2008. http://dx.doi.org/10.5957/icetech-2008-118.
Der volle Inhalt der QuelleBercha, Frank G., Richard Prentki, Caryn Smith und Milan Cerovsek. „Prediction of Oil Spill Occurrence Probabilities in the Alaskan OCS“. In SNAME 7th International Conference and Exhibition on Performance of Ships and Structures in Ice. SNAME, 2006. http://dx.doi.org/10.5957/icetech-2006-115.
Der volle Inhalt der QuelleOungoulian, Sevan R., Kelvin Chan, Jason Barritt, Casey A. McDonald, Alan B. Copperman, David Elad und Gerard A. Ateshian. „Influence of Zona Pellucida Area Expansion Stiffness on the Passive Response of Oocytes to Osmotic Loading“. In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53826.
Der volle Inhalt der QuelleAtaei, Abdol Hossain, und Figen Kırkpınar. „Application of In-Ovo Injection of Some Substances for Manipulation of Sex and Improving Performance in Chicken“. In International Students Science Congress. Izmir International Guest Student Association, 2021. http://dx.doi.org/10.52460/issc.2021.006.
Der volle Inhalt der QuelleBercha, Frank G. „Arctic and Northern Offshore Oil Spill Probabilities“. In SNAME 9th International Conference and Exhibition on Performance of Ships and Structures in Ice. SNAME, 2010. http://dx.doi.org/10.5957/icetech-2010-187.
Der volle Inhalt der QuelleOrendain, Adam, Jose Carrasco, Eniko T. Enikov und Gholam Peyman. „Evaluation of Electro-Spun Tubular Scaffolds to Create an Anastomosis Using the CAM Assay“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64687.
Der volle Inhalt der QuelleRugonyi, Sandra, und Kent Thornburg. „Modeling the Effect of Hemodynamics on Cardiac Growth During Embryonic Development“. In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13171.
Der volle Inhalt der QuelleLiu, Aiping, Ruikang Wang, Kent L. Thornburg und Sandra Rugonyi. „Efficient Synchronization and Reconstruction of 4D Non-Gated Cardiac Images of Chick Embryos Obtained From Optical Coherence Tomography“. In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206383.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Non-Embryonic development"
Browdy, Craig, und Esther Lubzens. Cryopreservation of Penaeid Shrimp Embryos: Development of a Germplasm Cryo-Bank for Preservation of High Health and Genetically Improved Stocks. United States Department of Agriculture, August 2002. http://dx.doi.org/10.32747/2002.7695849.bard.
Der volle Inhalt der QuelleUni, Zehava, und Peter Ferket. Enhancement of development of broilers and poults by in ovo feeding. United States Department of Agriculture, Mai 2006. http://dx.doi.org/10.32747/2006.7695878.bard.
Der volle Inhalt der QuelleSpencer, Thomas E., Elisha Gootwine, Arieh Gertler und Fuller W. Bazer. Placental lactogen enhances production efficiency in sheep. United States Department of Agriculture, Dezember 2005. http://dx.doi.org/10.32747/2005.7586543.bard.
Der volle Inhalt der Quelle