Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Non-Contact mode Atomic Force Microscopy (nc-AFM)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Non-Contact mode Atomic Force Microscopy (nc-AFM)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Non-Contact mode Atomic Force Microscopy (nc-AFM)"
Hosaka, Sumio, Takayuki Takizawa, Daisuke Terauchi, You Yin und Hayato Sone. „Pico-Newton Controlled Step-in Mode NC-AFM Using a Quadrature Frequency Demodulator and a Slim Probe in Air for CD-AFM“. Key Engineering Materials 497 (Dezember 2011): 95–100. http://dx.doi.org/10.4028/www.scientific.net/kem.497.95.
Der volle Inhalt der QuelleKönig, Thomas, Georg H. Simon, Lars Heinke, Leonid Lichtenstein und Markus Heyde. „Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy“. Beilstein Journal of Nanotechnology 2 (03.01.2011): 1–14. http://dx.doi.org/10.3762/bjnano.2.1.
Der volle Inhalt der QuelleChernoff, Ellen A. G., Donald A. Chernoff und Kevin Kjoller. „Contact and non-contact atomic-force microscopy of type I collagen“. Proceedings, annual meeting, Electron Microscopy Society of America 51 (01.08.1993): 518–19. http://dx.doi.org/10.1017/s0424820100148423.
Der volle Inhalt der QuelleCarmichael, Stephen W. „Atomic Force Microscopy for Biologists“. Microscopy Today 5, Nr. 3 (April 1997): 3–4. http://dx.doi.org/10.1017/s1551929500060193.
Der volle Inhalt der QuelleJalili, Nader, Mohsen Dadfarnia und Darren M. Dawson. „A Fresh Insight Into the Microcantilever-Sample Interaction Problem in Non-Contact Atomic Force Microscopy“. Journal of Dynamic Systems, Measurement, and Control 126, Nr. 2 (01.06.2004): 327–35. http://dx.doi.org/10.1115/1.1767852.
Der volle Inhalt der QuelleYoo, Ryan YK. „The Story behind the First Automatic Atomic Force Microscope“. Microscopy Today 30, Nr. 2 (März 2022): 40–45. http://dx.doi.org/10.1017/s1551929522000463.
Der volle Inhalt der QuelleLaflör, Linda, Michael Reichling und Philipp Rahe. „Protruding hydrogen atoms as markers for the molecular orientation of a metallocene“. Beilstein Journal of Nanotechnology 11 (22.09.2020): 1432–38. http://dx.doi.org/10.3762/bjnano.11.127.
Der volle Inhalt der QuelleHo, Huddee J. „Near Contact Mode AFM: Overcoming Surface Fluid Layer In Air And Achieve Ultra-High Resolution“. Microscopy Today 6, Nr. 8 (Oktober 1998): 12–15. http://dx.doi.org/10.1017/s1551929500069170.
Der volle Inhalt der QuelleRius, Gemma, Matteo Lorenzoni, Soichiro Matsui, Masaki Tanemura und Francesc Perez-Murano. „Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes“. Beilstein Journal of Nanotechnology 6 (19.01.2015): 215–22. http://dx.doi.org/10.3762/bjnano.6.20.
Der volle Inhalt der QuelleLübbe, Jannis, Matthias Temmen, Philipp Rahe und Michael Reichling. „Noise in NC-AFM measurements with significant tip–sample interaction“. Beilstein Journal of Nanotechnology 7 (01.12.2016): 1885–904. http://dx.doi.org/10.3762/bjnano.7.181.
Der volle Inhalt der QuelleDissertationen zum Thema "Non-Contact mode Atomic Force Microscopy (nc-AFM)"
Para, Franck. „Nanostructures organiques en régimes supra-moléculaire et covalent sur substrats diélectriques : propriétés structurales et optiques“. Electronic Thesis or Diss., Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0289.
Der volle Inhalt der QuelleThis thesis deals with the study of the influence of the structure of matter at the atomic scale on its macroscopic properties. Thereto, the IM2NP Nanostructuration team masters the synthesis and characterization of functionalized organic nanostructureson solid surfaces. Specifically, this work focuses on the study of the structural and optical properties of organic nanostructures grown on dielectric single-crystalline alkaly halides substrates under ultra-high vacuum and ambient temperature. Experiments are carried out by non-contact Atomic Force Microscopy (structural properties) and by Differential Reflectance Spectroscopy (optical properties of UV-visible absorption). Two distinct growth regimes have been investigated, with different molecules each. The first system involves supramolecular nanostructures of bis-pyrenes molecules grown on KCl(001) and NaCl(001). The combined study of their structural and optical properties, from the sub-monolayer to the multilayer regime, allows us to quantitatively extract the dielectric function of the layers at the different stages of their growth. The second system deals with a more recent topic in the surface science community, namely on-surface synthesis. In this case, upon adsorption, the molecules bind together covalently, which results in nanostructures that are more cohesive than in the supramolecular regime. We have evidenced the formation of covalent structures by free-radical polymers of dimaleimide on KCl(001) under UV illumination
Spadafora, Evan. „Etude par microscopie à force atomique en mode non contact et microscopie à sonde de Kelvin, de matériaux modèles pour le photovoltaïque organique“. Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00647312.
Der volle Inhalt der QuelleVecchiola, Aymeric. „Développement d’une imagerie de résistance électrique locale par AFM à pointe conductrice en mode contact intermittent“. Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112058/document.
Der volle Inhalt der QuelleThe atomic force microscope (AFM) allows to characterize with excellent spatial resolution samples of different types of surfaces and can be implemented in various environments. This versatility has encouraged the development of a large number of derivative technics, intended to investigate various local physical properties. The LGEP thus achieved a module, the Résiscope, capable of measuring the local electrical resistance on the surface of a sample polarized continuously, on a range of 11 decades. Developed in contact mode, where the tip continuously exerts a force on the sample, this technic works well on hard materials, but finds its limits on soft or fragile samples since under certain conditions, the tip can alter the surface. For such samples, an intermittent contact mode, in which the tip comes at regular intervals touch very briefly the surface, is more appropriate, but complicates the achievement of electrical measurements. The aim of this thesis was to overcome this difficulty by changing the Résiscope to be able to join the "Pulsed Force Mode", intermittent mode where the tip oscillates at a frequency of 100Hz to 2000Hz. Different hardware and software changes have been made to permit the detailed temporal monitoring of the electrical resistance signal to each make / break contact (necessary to review the phenomena related to intermittency), as well as to be able to work in acceptable scan speeds. For imaging, the best contrasts were obtained through an electronic timing and treatment taking into account the electrical resistance values at specific times.To test this new system, we have initially compared resistance and deflection curves we get by this mode with those considered classically in the force-distance curves mode. We then investigated the influence of main parameters (frequency and amplitude of oscillation, setpoint, coating of the tips, etc.) on the topographical and electrical measurements, using the HOPG as reference material. These tests resulted to highlight a nearly systematic delay of the electrical signal relative to the deflection signal (other than the Resiscope measure time), which we were not able to elucidate the origin. Once these knowledge acquired, we studied two types of organic samples, one in academic nature - Self-Assembled Monolayers of alkanethiols (SAMs), the other more applicative purpose – formed of thin layers of an interpenetrating network of two components (P3HT:PCBM) for photovoltaic cells. In both cases we have shown the relevance of the Resiscope tool in intermittent mode to obtain qualitative and quantitative information. In addition to these work on fragile materials, we conducted an annex study on a phenomenon of growth material of insulating nature found in special conditions on various hard materials, which has been interpreted as the friction polymer formation as a result of repeatedly nano-sliding associated with the deflection of the cantilever. These investigations were conducted under a CIFRE agreement with the Concept Scientific Instruments company, backed by the ANR MELAMIN» (P2N 2011) project
Siry, Pierre. „Développement d'un dispositif d'acoustique picoseconde en microscopie optique de champ proche pour l'étude des propriétés élastiques de nano-objets“. Paris 6, 2002. http://www.theses.fr/2002PA066339.
Der volle Inhalt der QuelleOlbrich, Reinhard. „NC-AFM studies on CeO2 film and CeO2 crystal surfaces“. Doctoral thesis, 2018. https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2018053017217.
Der volle Inhalt der QuelleLübbe, Jannis Ralph Ulrich. „Cantilever properties and noise figures in high-resolution non-contact atomic force microscopy“. Doctoral thesis, 2013. https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2013040310741.
Der volle Inhalt der Quelle(11013732), Devin M. Kalafut. „Multistability in microbeams: Numerical simulations and experiments in capacitive switches and resonant atomic force microscopy systems“. Thesis, 2021.
Den vollen Inhalt der Quelle findenThe nonlinear multiphysics forces present in the devices are critical to the switching behavior exploited for novel applications, but are also a culprit in a common failure mode when the attractive forces overcome the restorative and repulsive forces to result in two elements sticking together. Quasistatic operation is functional for switching between multistable states during normal conditions, but is insufficient under such stiction-failure. Exploration of dynamic methods for stiction release is often the only option for many system configurations. But how and when is release achieved? To investigate the fundamental mechanism of dynamic release, an atomic force microscopy (AFM) system -- a microcantilever with a motion-controlled base and a single-asperity probe tip, measured and actuated via lasers -- is configured to replicate elements of a stiction-failed MEMS device. Through this surrogate, observable dynamic signatures of microcantilever deflection indicate the onset of detachment between the probe and a sample.
Bücher zum Thema "Non-Contact mode Atomic Force Microscopy (nc-AFM)"
Chen, C. Julian. Introduction to Scanning Tunneling Microscopy. 3. Aufl. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198856559.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Non-Contact mode Atomic Force Microscopy (nc-AFM)"
Chen, C. Julian. „Atomic Force Microscopy“. In Introduction to Scanning Tunneling Microscopy, 379–400. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198856559.003.0016.
Der volle Inhalt der QuelleSanders, Wesley C. „Contact Mode AFM“. In Atomic Force Microscopy, 61–72. CRC Press, 2019. http://dx.doi.org/10.1201/9780429266553-5.
Der volle Inhalt der Quelle„Contact Mode AFM“. In Fundamentals of Atomic Force Microscopy, 229–59. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814630368_0008.
Der volle Inhalt der QuelleSouier, Tewfik. „Conductive Probe Microscopy Investigation of Electrical and Charge Transport in Advanced Carbon Nanotubes and Nanofibers-Polymer Nanocomposites“. In Handbook of Research on Nanoscience, Nanotechnology, and Advanced Materials, 343–75. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-5824-0.ch014.
Der volle Inhalt der QuelleChen, C. Julian. „Nanomechanical Effects“. In Introduction to Scanning Tunneling Microscopy, 253–72. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198856559.003.0009.
Der volle Inhalt der QuelleEl Dakkony, Saly R., Mahmoud F. Mubarak und Adel A. H. Abdel-Rahman. „Nanocellulose-based Membranes for Water Purification: Multifunctional Nanocellulose Extraction, Characterization, Modification Strategies, and Current Release in Water Treatment and Environmental Remediation“. In Novel Materials and Water Purification, 101–25. Royal Society of Chemistry, 2024. http://dx.doi.org/10.1039/9781837671663-00101.
Der volle Inhalt der QuelleMark, James E., Dale W. Schaefer und Gui Lin. „Some Characterization Techniques Useful for Polysiloxanes“. In The Polysiloxanes. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780195181739.003.0006.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Non-Contact mode Atomic Force Microscopy (nc-AFM)"
Belardinelli, Pierpaolo, Abhilash Chandrashekar, Farbod Alijani und Stefano Lenci. „Non-Smooth Dynamics of Tapping Mode Atomic Force Microscopy“. In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-88005.
Der volle Inhalt der QuelleLaxminarayana, Karthik, und Nader Jalili. „A Review of Recent Developments in Atomic Force Microscopy Systems With Application to Manufacturing and Biological Processes“. In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41170.
Der volle Inhalt der QuelleJalili, Nader, Mohsen Dadfarnia und Darren M. Dawson. „Distributed-Parameters Base Modeling and Vibration Analysis of Micro-Cantilevers Used in Atomic Force Microscopy“. In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48502.
Der volle Inhalt der QuellePishkenari, H. N., Nader Jalili und A. Meghdari. „Acquisition of High Precision Images for Non-Contact Atomic Force Microscopy via Direct Identification of Sample Height“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81627.
Der volle Inhalt der QuelleBurson, Kristen M., Mahito Yamamoto und William G. Cullen. „High Resolution Microscopy of SiO2 and the Structure of SiO2-Supported Graphene“. In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48737.
Der volle Inhalt der QuelleMagonov, Sergei, und John D. Alexander. „Multifrequency Approaches in Characterization of Materials With Single-Pass Kelvin Force Microscopy“. In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-29225.
Der volle Inhalt der QuelleNikooienejad, Nastaran, Mohammad Maroufi und S. O. Reza Moheimani. „A Novel Non-Raster Scan Method for AFM Imaging“. In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9049.
Der volle Inhalt der QuellePishkenari, Hossein Nejat, und Ali Meghdari. „The Atomic-Scale Hysteresis in Non Contact Atomic Force Microscopy“. In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24683.
Der volle Inhalt der QuelleArafat, Haider N., Ali H. Nayfeh und Elihab M. Abdel-Rahman. „Modal Interactions in Contact-Mode Atomic Force Microscopes“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14938.
Der volle Inhalt der QuelleStark, R. W. „Force Feedback in Dynamic Atomic Force Microscopy“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81264.
Der volle Inhalt der Quelle