Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „NO gas“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "NO gas" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "NO gas"
Goto, Nobuharu, und Richard P. Pharis. „Role of gibberellins in the development of floral organs of the gibberellin-deficient mutant, ga1-1, of Arabidopsis thaliana“. Canadian Journal of Botany 77, Nr. 7 (05.11.1999): 944–54. http://dx.doi.org/10.1139/b99-090.
Der volle Inhalt der QuelleTu, Yicheng, Peter Hirst, Ronald Coolbaugh und Richard Pharis. „532 Endogenous Gibberellins in Developing Apple Seeds in Relation to Biennial Bearing“. HortScience 35, Nr. 3 (Juni 2000): 487B—487. http://dx.doi.org/10.21273/hortsci.35.3.487b.
Der volle Inhalt der QuelleKamboj, Nitin, und Mohrana Choudhary. „Impact of solid waste disposal on ground water quality near Gazipur dumping site, Delhi, India“. Journal of Applied and Natural Science 5, Nr. 2 (01.12.2013): 306–12. http://dx.doi.org/10.31018/jans.v5i2.322.
Der volle Inhalt der QuelleShiraiwa, Nobutaka, Kaori Kikuchi, Ichiro Honda, Masayoshi Shigyo, Hiroko Yamazaki, Daisuke Tanaka, Kenji Tanabe und Akihiro Itai. „Characterization of Endogenous Gibberellins and Molecular Cloning of a Putative Gibberellin 3-Oxidase Gene in Bunching Onion“. Journal of the American Society for Horticultural Science 136, Nr. 6 (November 2011): 382–88. http://dx.doi.org/10.21273/jashs.136.6.382.
Der volle Inhalt der QuelleRebers, Mariken, Evert Vermeer, Erik Knegt und Linus H. W. van der Plas. „Gibberellin Levels Are Not a Suitable Indicator for Properly Cold-treated Tulip Bulbs“. HortScience 31, Nr. 5 (September 1996): 837–38. http://dx.doi.org/10.21273/hortsci.31.5.837.
Der volle Inhalt der QuelleYang, Xiaohua, Susan K. Brown und Peter J. Davies. „The Content and In Vivo Metabolism of Gibberellin in Apple Vegetative Tissues“. Journal of the American Society for Horticultural Science 138, Nr. 3 (Mai 2013): 173–83. http://dx.doi.org/10.21273/jashs.138.3.173.
Der volle Inhalt der QuelleKosakivska, I. V. „GIBBERELLINS IN REGULATION OF PLANT GROWTH AND DEVELOPMENT UNDER ABIOTIC STRESSES“. Biotechnologia Acta 14, Nr. 2 (Februar 2021): 5–18. http://dx.doi.org/10.15407/biotech14.02.005.
Der volle Inhalt der QuellePang, Yongqi, Jintong Li, Bishu Qi, Mi Tian, Lirong Sun, Xuechen Wang und Fushun Hao. „Aquaporin AtTIP5;1 as an essential target of gibberellins promotes hypocotyl cell elongation in Arabidopsis thaliana under excess boron stress“. Functional Plant Biology 45, Nr. 3 (2018): 305. http://dx.doi.org/10.1071/fp16444.
Der volle Inhalt der QuelleMilovanov, Y. S. „Influence of gas adsorption on the impedance of porous GaAs“. Functional materials 23, Nr. 4 (24.03.2017): 052–55. http://dx.doi.org/10.15407/fm24.01.052.
Der volle Inhalt der QuelleSamba, Mohammed Alsharif, Ibrahim Aldokali und Mahmoud Omran Elsharaf. „A New EOR Technology: Gas Alternating Gas Injection“. Journal of Earth Energy Engineering 8, Nr. 1 (30.04.2019): 27–32. http://dx.doi.org/10.25299/jeee.2019.vol8(1).2354.
Der volle Inhalt der QuelleDissertationen zum Thema "NO gas"
Shahnaz, Sabina. „Gas flux estimation from surface gas concentrations“. Thesis, Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/55073.
Der volle Inhalt der QuelleZanker, Matthew John. „Real gas effects in heated gas inflators“. Thesis, University of Iowa, 2010. https://ir.uiowa.edu/etd/768.
Der volle Inhalt der QuelleAbdalsadig, M. „Gas lift optimization utilising automation gas lift valve“. Thesis, University of Salford, 2017. http://usir.salford.ac.uk/44593/.
Der volle Inhalt der QuelleLabed, Ismail. „Gas-condensate flow modelling for shale gas reservoirs“. Thesis, Robert Gordon University, 2016. http://hdl.handle.net/10059/2144.
Der volle Inhalt der QuelleCAVANA, MARCO. „Gas network modelling for a multi-gas system“. Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2850606.
Der volle Inhalt der QuelleLobova, A., J. Sitnik, A. Spivak und V. Gavrilova. „Gas compressors“. Thesis, Вид-во СумДУ, 2009. http://essuir.sumdu.edu.ua/handle/123456789/17049.
Der volle Inhalt der QuelleMulyadi, Henny. „Determination of residual gas staturation and gas-water relative permeability in water-driven gas reserviors /“. Full text available, 2002. http://adt.curtin.edu.au/theses/available/adt-WCU20030702.131009.
Der volle Inhalt der QuelleMulyadi, Henny. „Determination of residual gas saturation and gas-water relative permeability in water-driven gas reservoirs“. Thesis, Curtin University, 2002. http://hdl.handle.net/20.500.11937/1294.
Der volle Inhalt der QuelleMulyadi, Henny. „Determination of residual gas saturation and gas-water relative permeability in water-driven gas reservoirs“. Curtin University of Technology, Department of Petroleum Engineering, 2002. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=12957.
Der volle Inhalt der Quellewere compared.The evidence suggested that steady-state displacement and co-current imbibition tests are the most representative techniques for reservoir application. Steady-state displacement also yields the complete relative permeability (RP) data but it requires long stabilisation times and is costly.In the third stage, a new technique was successfully developed for determining both Sgr and gas-water RP data. The new method consists of an initial co-current imbibition experiment followed by the newly developed correlation (Mulyadi, Amin and Kennaird correlation). Co-current imbibition is used to measure the end-point data, for example, initial water saturation (Swi) and Sgr. The MAK correlation was developed to extend the co-current imbibition test by generating gas-water relative permeability data. Unlike previous correlations, MAK correlation is unique because it incorporates and exhibits the formation properties, reservoir conditions and fluid properties (for example, permeability, porosity, interfacial tension and gas density) to generate the RP curves. The accuracy and applicability of MAK correlations were investigated with several sets of gas-water RP data measured by steady-state displacement tests for various gas reservoirs in Australia, New Zealand, South-East Asia and U.S.A. The MAK correlation proved superior to previously developed correlations to demonstrate its robustness.The purpose of the final stage was to aggressively pursue the possibility of advancing the application of the new technique beyond special core analysis (SCAL). As MAK correlation is successful in describing gas water RP in a core plug scale, it is possible to extend its application to describe the overall reservoir flow behaviour. This investigation was achieved by implementing MAK correlation into a 3-D reservoir simulator (MoReS) and performing simulations on a producing ++
field.The simulation studies were divided into two categories: pre and post upscaled application.The case studies were performed on two X gas-condensate fields: X1 (post upscaled) and X2 (pre upscaled) fields. Since MAK correlation was developed for gas-water systems, several modifications were required to account for the effect of the additional phase (oil) on gas and water RP in gas-condensate systems. In this case, oil RP data was generated by Corey's equations. Five different case studies were performed to investigate the individual and combination effect of implementing MAK correlation, alternative Swi and Sgr correlations and refining porosity and permeability clustering. Moreover, MAK correlation has proven to be effective as an approximation technique for cell by cell simulation to advance reservoir simulation technology.
Ozturk, Bulent. „Simulation Of Depleted Gas Reservoir For Underground Gas Storage“. Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605723/index.pdf.
Der volle Inhalt der Quelletake or pay&rdquo
approach creates problems since the demand for natural gas varies during the year and the excess amount of natural gas should be stored. In this study, an underground gas storage project is evaluated in a depleted gas Field M. After gathering all necessary reservoir, fluid, production and pressure data, the data were adapted to computer language, which was used in a commercial simulator software (IMEX) that is the CMG&rsquo
s (Computer Modelling Group) new generation adoptive simulator, to reach the history matching. The history matching which consists of the 4 year of production of the gas reservoir is the first step of this study. The simulation program was able to accomplish a good history match with the given parameters of the reservoir. Using the history match as a base, five different scenarios were created and forecast the injection and withdrawal performance of the reservoir. These scenarios includes 5 newly drilled horizontal wells which were used in combinations with the existing wells. With a predetermined injection rate of 13 MMcf/D was set for all the wells and among the 5 scenarios, 5 horizontal &ndash
6 vertical injectors &
5 horizontal - 6 vertical producers is the most successful in handling the gas inventory and the time it takes for a gas injection and production period. After the determination of the well configuration, the optimum injection rate for the entire field was obtained and found to be 130 MMcf/D by running different injection rates for all wells and then for only horizontal wells different injection rates were applied with a constant injection rate of 130 MMcf/d for vertical wells. Then it has been found that it is better to apply the 5th scenario which includes 5 horizontal &ndash
6 vertical injectors &
5 horizontal - 6 vertical producers having an injection rate of 130 MMcf/d for horizontal and vertical wells. Since within the 5th scenario, changing the injection rate to 1.3 Bcf/d and 13 Bcf/d, did not effect and change the average reservoir pressure significantly, it is best to carry out the project with the optimum injection rate which is 130 MMcf/d. The total gas produced untill 2012 is 394 BCF and the gas injected is 340 BCF where the maximum average reservoir pressure was recovered and set into a new value of 1881 psi by injection and cushion gas pressure as 1371 psi by withdrawal. If 5th scenario is compared with the others, there is an increase in injection and production performance about 90%.
Bücher zum Thema "NO gas"
Bartnik, Ryszard, und Tomasz Wojciech Kowalczyk. Hierarchical Gas-Gas Systems. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69205-6.
Der volle Inhalt der QuelleFaul, Eckhard, Hrsg. Gas/Gas. Zweiter Teil. Stuttgart, Germany: Reclam-Verlag, 2013.
Den vollen Inhalt der Quelle findenFlórez, José Manuel Alvarez. Gas. Madrid: Anaya & M. Muchnik, 1993.
Den vollen Inhalt der Quelle findenPipe, Jim. Gas. Mankato, Minn: Stargazer Books, 2011.
Den vollen Inhalt der Quelle findenCranfield, John. Gas. London: BP Educational Service, 1986.
Den vollen Inhalt der Quelle findenCommission, Monopolies and Mergers. Gas. London [England]: HMSO, 1993.
Den vollen Inhalt der Quelle findenJackman, Wayne. Gas. New York: Thomson Learning, 1993.
Den vollen Inhalt der Quelle findenSteven, Berkoff, Hrsg. Gas. London]: Bloomsbury, 2013.
Den vollen Inhalt der Quelle findenAssociates, Ron Hayward, Hrsg. Gas. New York: Gloucester Press, 1985.
Den vollen Inhalt der Quelle findenXiao, Dengming. Gas Discharge and Gas Insulation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48041-0.
Der volle Inhalt der QuelleBuchteile zum Thema "NO gas"
Madhusudana, C. V. „Gas Gap Conductance“. In Mechanical Engineering Series, 45–63. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-3978-9_4.
Der volle Inhalt der QuelleBartnik, Ryszard, und Tomasz Wojciech Kowalczyk. „Replacing Natural Gas in a Gas–Gas Engine with Nuclear Fuel“. In Hierarchical Gas-Gas Systems, 143–46. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69205-6_7.
Der volle Inhalt der QuelleBartnik, Ryszard, und Tomasz Wojciech Kowalczyk. „Thermodynamic and Economic Analysis of a Gas Turbine Set Coupled with a Turboexpander in a Hierarchical Gas–Gas System“. In Hierarchical Gas-Gas Systems, 35–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69205-6_3.
Der volle Inhalt der QuelleBartnik, Ryszard, und Tomasz Wojciech Kowalczyk. „Introduction“. In Hierarchical Gas-Gas Systems, 1–7. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69205-6_1.
Der volle Inhalt der QuelleBartnik, Ryszard, und Tomasz Wojciech Kowalczyk. „Thermodynamic and Economic Analysis of Trigeneration System with a Hierarchical Gas-Gas Engine for Production of Electricity, Heat and Cold“. In Hierarchical Gas-Gas Systems, 65–97. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69205-6_4.
Der volle Inhalt der QuelleBartnik, Ryszard, und Tomasz Wojciech Kowalczyk. „Economic Analysis of Hydrogen Production in the Process of Water Electrolysis in a Gas–Gas Engine System“. In Hierarchical Gas-Gas Systems, 99–114. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69205-6_5.
Der volle Inhalt der QuelleBartnik, Ryszard, und Tomasz Wojciech Kowalczyk. „Thermodynamic and Economic Analysis of a Hierarchical Gas-Gas Engine Integrated with a Compressed Air Storage“. In Hierarchical Gas-Gas Systems, 115–42. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69205-6_6.
Der volle Inhalt der QuelleBartnik, Ryszard, und Tomasz Wojciech Kowalczyk. „Basic Thermodynamic Analyses of Hierarchical Systems“. In Hierarchical Gas-Gas Systems, 9–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69205-6_2.
Der volle Inhalt der QuelleZarach, Stephanie. „Gas“. In Debrett’s Bibliography of Business History, 117–18. London: Palgrave Macmillan UK, 1987. http://dx.doi.org/10.1007/978-1-349-08984-0_26.
Der volle Inhalt der QuelleCrew, Michael A., und Paul R. Kleindorfer. „Gas“. In The Economics of Public Utility Regulation, 235–44. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-07295-8_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "NO gas"
Badykov, Renat, Sergei Falaleev, Houston Wood und Alexander Vinogradov. „Gas film vibration inside dry gas seal gap“. In 2018 Global Fluid Power Society PhD Symposium (GFPS). IEEE, 2018. http://dx.doi.org/10.1109/gfps.2018.8472383.
Der volle Inhalt der QuelleMartins, D., I. Catarino, U. Schroder, J. Ricardo, R. Patricio, L. Duband, G. Bonfait und J. G. Weisend. „CUSTOMIZABLE GAS-GAP HEAT SWITCH“. In TRANSACTIONS OF THE CRYOGENIC ENGINEERING CONFERENCE—CEC: Advances in Cryogenic Engineering. AIP, 2010. http://dx.doi.org/10.1063/1.3422349.
Der volle Inhalt der QuelleHELMY, A. „GAP propellant for gas generator application“. In 23rd Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-1725.
Der volle Inhalt der QuelleSuomilammi, Ari. „Vent Gas Collection From Gas Compressor Dry Gas Seals“. In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53154.
Der volle Inhalt der QuelleSim, S. S. K., A. T. Turta, A. K. Singhal und B. F. Hawkins. „Enhanced Gas Recovery: Factors Affecting Gas-Gas Displacement Efficiency“. In Canadian International Petroleum Conference. Petroleum Society of Canada, 2008. http://dx.doi.org/10.2118/2008-145.
Der volle Inhalt der QuelleTurta, A. T., S. S. K. Sim, A. K. Singhal und B. F. Hawkins. „Basic Investigations on Enhanced Gas Recovery by Gas-Gas Displacement“. In Canadian International Petroleum Conference. Petroleum Society of Canada, 2007. http://dx.doi.org/10.2118/2007-124.
Der volle Inhalt der QuelleJanakiram, Dharanipragada, S. J. Balaji, Akshay Dhumal, Nishank Garg und Ganesh Kulkarni. „GAS“. In ICPP '18 Comp: 47th International Conference on Parallel Processing Companion. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3229710.3229758.
Der volle Inhalt der QuelleZhou, Minxuan, Mohsen Imani, Saransh Gupta und Tajana Rosing. „GAS“. In ISLPED '18: International Symposium on Low Power Electronics and Design. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3218603.3218631.
Der volle Inhalt der QuelleSinghal, A. K., S. Sim und B. Hawkins. „Gas Return From Gas Injection Projects“. In Canadian International Petroleum Conference. Petroleum Society of Canada, 2008. http://dx.doi.org/10.2118/2008-172.
Der volle Inhalt der QuelleLiya, Zhang. „Feasibility Study of Tianwaitian Gas Field Gas Condensate Reinjection Gas Well“. In 2013 Fifth International Conference on Computational and Information Sciences (ICCIS). IEEE, 2013. http://dx.doi.org/10.1109/iccis.2013.329.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "NO gas"
Rudy Rogers und John Etheridge. Gas Hydrate Storage of Natural Gas. Office of Scientific and Technical Information (OSTI), März 2006. http://dx.doi.org/10.2172/903468.
Der volle Inhalt der QuelleSwanson, M. L. Gas separation and hot-gas cleanup. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/244395.
Der volle Inhalt der QuelleHoward S. Meyer. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING. Office of Scientific and Technical Information (OSTI), Oktober 2004. http://dx.doi.org/10.2172/834332.
Der volle Inhalt der QuelleHoward S. Meyer. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING. Office of Scientific and Technical Information (OSTI), Januar 2005. http://dx.doi.org/10.2172/836819.
Der volle Inhalt der QuelleHoward S. Meyer. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING. Office of Scientific and Technical Information (OSTI), Januar 2004. http://dx.doi.org/10.2172/822675.
Der volle Inhalt der QuelleHoward S. Meyer. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/823714.
Der volle Inhalt der QuelleHoward S. Meyer. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING. Office of Scientific and Technical Information (OSTI), Juli 2004. http://dx.doi.org/10.2172/826361.
Der volle Inhalt der QuelleHoward S. Meyer. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/815216.
Der volle Inhalt der QuelleHoward S. Meyer. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING. Office of Scientific and Technical Information (OSTI), Juni 2002. http://dx.doi.org/10.2172/815217.
Der volle Inhalt der QuelleHoward S. Meyer. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING. Office of Scientific and Technical Information (OSTI), Juni 2002. http://dx.doi.org/10.2172/815218.
Der volle Inhalt der Quelle