Zeitschriftenartikel zum Thema „Nitrogen“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Nitrogen.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Nitrogen" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Takahashi, Mikio, und Yatsuka Saijo. „Nitrogen metabolism in Lake Kizaki, Japan V. The role of nitrogen fixation in nitrogen requirement of phytoplankton“. Archiv für Hydrobiologie 112, Nr. 1 (24.03.1988): 43–54. http://dx.doi.org/10.1127/archiv-hydrobiol/112/1988/43.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kubát, J., J. Klír und D. Pova. „The dry nitrogen yields nitrogen uptake, and the efficacy on nitrogen fertilisation in long-term experiment in Prague“. Plant, Soil and Environment 49, No. 8 (10.12.2011): 337–45. http://dx.doi.org/10.17221/4134-pse.

Der volle Inhalt der Quelle
Annotation:
Long-term field experiments conducted under different soil and climate conditions and their databases provide invaluable information and are indispensable means in the study of the productivity and sustainability of the soil management systems. We evaluated the results of the dry matter yields of the main products obtained with four variants of organic and mineral fertilisation in three long-term field experiments established in 1955. The experiments differed in the cultivated crops. The period of evaluation was 12 and 16 years (1985–2000), respectively. The productivity of nine-year crop rotation was lower with the fertilised variants than that with the alternative growing of spring wheat and sugar beets. The dry matter yields on the Nil variants, however, were higher in the crop rotation than in the alternate sugar beet and spring wheat growing, apparently due to the symbiotic nitrogen fixation. The dry matter yields of sugar beet and mainly of spring wheat declined in almost all variants of fertilisation in the alternate sugar beet and spring wheat growing, over the evaluated time period. In spite of the relatively high dry matter production, the declining yields indicated a lower sustainability of the alternate cropping system. Both organic and mineral fertilisation increased the production of the cultivated crops. The differences in the average dry matter yields were statistically significant. Both organic and mineral fertilisation enhanced significantly the N-uptake by the cultivated crops. The effectivity of nitrogen input was the highest with the alternate cropping of sugar beet and spring wheat indicating that it was more demanding for the external N-input and thus less sustainable than nine-year crop rotation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Iduna, Arduini, Cardelli Roberto und Pana Silvia. „Biosolids affect the growth, nitrogen accumulation and nitrogen leaching of barley“. Plant, Soil and Environment 64, No. 3 (21.03.2018): 95–101. http://dx.doi.org/10.17221/745/2017-pse.

Der volle Inhalt der Quelle
Annotation:
Biosolids are organic fertilisers derived from treated and stabilised sewage sludge that increase soil fertility and supply nitrogen to crops over a long period, but can also increase the risk of nitrogen (N) leaching. In this work, spring barley was grown in lysimeters filled with soil amended with biosolids, and with and without mineral N fertilisation. Biomass and the N concentration and content of shoots and roots were determined at flowering and maturity, and the N remobilization was calculated during grain filling. Drainage water was collected and analysed for N leaching. Biosolids increased soil porosity and soil nitrate, and positively affected the growth and N uptake of barley. Compared to mineral fertilisers, biosolids produced 18% higher vegetative biomass and 40% higher grain yield. During grain filling, both N uptake and N remobilization were higher with biosolids, which increased the grain N content by 32%. Nitrogen loss in leachates was 1.2% of plant uptake with mineral fertilisers and 1.7% with biosolids. Thus, soil fertilisation with biosolids greatly benefits spring barley, only slightly increasing N leaching.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Löhr, Frank, und Heinz Rüterjans. „Detection of Nitrogen–NitrogenJ-Couplings in Proteins“. Journal of Magnetic Resonance 132, Nr. 1 (Mai 1998): 130–37. http://dx.doi.org/10.1006/jmre.1998.1406.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Plhák, F. „Nitrogen supply through transpiration mass flow can limit nitrogen nutrition of plants“. Plant, Soil and Environment 49, No. 10 (10.12.2011): 473–79. http://dx.doi.org/10.17221/4159-pse.

Der volle Inhalt der Quelle
Annotation:
Pea (Pisum sativum L.), sunflower (Helianthus annuus L.) and maize (Zea mays L.) plants were cultivated for 10 days in hydroponics at 1mM and 7mM nitrate or ammonium concentrations at regulated pH 6 and ambient CO2 level. Plant growth, content of total N and both ions in plant tissues, uptake of water and both N ions were evaluated, N uptake related to transpiration mass flow and to diffusion supply was calculated. Pea and sunflower preferred nitrate nutrition while maize plants used both N ions. The content of total N as well as of both N ions in plant tissues increased with N level with some exceptions. The uptake of both N ions related to transpiration mass flow was dependent on transpiration rate and N ion concentration. At a 1mM N concentration the uptake of N ions related to transpiration mass flow was low and reached in maize up to 16 times, in sunflower 11 times and in pea 2–3 times lower values in comparison with diffusion supply. At a 7mM N concentration N uptake in pea plants was totally supplied by transpiration mass flow, in sunflower plants the ratio of N supply related to transpiration mass flow amounted to 50% and in maize plants N supply through diffusion prevailed, amounting to 70–80%. These results explicate N starvation at low N supply that can intensify at elevated CO2 causing decreased stomatal diffusion.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Meulenbelt, Jan. „Nitrogen and Nitrogen Oxides“. Medicine 31, Nr. 10 (Oktober 2003): 64. http://dx.doi.org/10.1383/medc.31.10.64.27826.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Meulenbelt, Jan. „Nitrogen and nitrogen oxides“. Medicine 35, Nr. 12 (Dezember 2007): 638. http://dx.doi.org/10.1016/j.mpmed.2007.09.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Meulenbelt, Jan. „Nitrogen and nitrogen oxides“. Medicine 40, Nr. 3 (März 2012): 139. http://dx.doi.org/10.1016/j.mpmed.2011.12.020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Černý, J., J. Balík, D. Pavlíková, M. Zitková und K. Sýkora. „The influence of organic and mineral nitrogen fertilizers on microbial biomass nitrogen and extractable organic nitrogen in long-term experiments with maize“. Plant, Soil and Environment 49, No. 12 (11.12.2011): 560–64. http://dx.doi.org/10.17221/4194-pse.

Der volle Inhalt der Quelle
Annotation:
Microbial biomass nitrogen and extractable organic nitrogen in extractions by 0.05M K<sub>2</sub>SO<sub>4</sub>&nbsp;and 0.01M CaCl<sub>2</sub>&nbsp;were studied in a&nbsp;long-term experiment with successive growing of silage maize. The highest content of microbial biomass nitrogen was measured for manure treatment, by 38&ndash;133% higher than for the control. In treatments with applications of mineral nitrogen fertilizers microbial biomass N was lower on average by 22&ndash;30% against the control. Extractable organic nitrogen was also lower in treatments with mineral N fertilizers compared to the control: by 23% in ammonium sulphate treatment and by 29% in DAM. The highest content of extractable organic nitrogen was determined for manure treatment. There was a&nbsp;positive correlation (r = 0.44&ndash;0.9) between microbial biomass nitrogen and extractable organic nitrogen in the extractions by 0.01M CaCl<sub>2</sub>&nbsp;and 0.05M K<sub>2</sub>SO<sub>4</sub>.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zorc, B. „Automatic TIG welding of austenitic stainless steels in nitrogen and nitrogen-based gas mixtures“. Revista de Metalurgia 47, Nr. 1 (28.02.2011): 29–37. http://dx.doi.org/10.3989/revmetalmadrid.0962.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Nagiev, T. M., N. I. Ali-zadeh, L. M. Gasanova, I. T. Nagieva, Ch A. Mustafaeva, N. N. Malikova, A. A. Abdullaeva und E. S. Bakhramov. „NITROGEN FIXATION AT CONJUGATED OXIDATION“. Azerbaijan Chemical Journal, Nr. 2 (2018): 6–10. http://dx.doi.org/10.32737/0005-2531-2018-2-6-10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Vidal Vidal, Ángel, Carlos Silva López und Olalla Nieto Faza. „Nitrogen doped nanohoops as promising CO2 capturing devices“. Physical Chemistry Chemical Physics 20, Nr. 13 (2018): 8607–15. http://dx.doi.org/10.1039/c7cp08498f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Sedlář, O., J. Balík, J. Černý, L. Peklová und K. Kubešová. „Dynamics of the nitrogen uptake by spring barley at injection application of nitrogen fertilizers  “. Plant, Soil and Environment 59, No. 9 (05.09.2013): 392–97. http://dx.doi.org/10.17221/76/2013-pse.

Der volle Inhalt der Quelle
Annotation:
Influence of CULTAN system (controlled uptake long term ammonium nutrition) on the nitrogen uptake by spring barley (Hordeum vulgare L.) was observed at 5-year small-plot field experiments under conditions of the Czech Republic (central Europe). Nitrogen uptake by CULTAN-fertilized plants was more even during vegetation period probably due to delayed term of fertilizer application. Nitrogen concentration in the aboveground biomass at BBCH 51 and in straw had no effect on grain yield. Post-heading nitrogen uptake as well as contribution of nitrogen translocation to total nitrogen in grain did not differ among both nitrogen fertilization treatments. Increase in grain size of spring barley by the CULTAN system can be explained by tendency to lower number of ears per area rather than by prolonged nitrogen uptake from soil. Lower protein content in grain of CULTAN-fertilized spring barley can be caused by increase in grain retained on a 2.5 mm sieve and also decrease in total nitrogen concentration in above-ground biomass at BBCH 51. No significant effect of CULTAN treatment on nitrogen use efficiency and nitrogen uptake efficiency was recorded. Significantly higher nitrogen utilization efficiency at CULTAN treatment could be explained by lower grain protein content compared to conventional treatment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Soloviev, S. O., P. I. Kyriienko, N. O. Popovych und O. V. Larina. „Development of Catalysts for Abating Toxic Nitrogen Oxides in Gas Emissions of Nitrogen Acid Production“. Science and innovation 15, Nr. 1 (17.03.2019): 59–71. http://dx.doi.org/10.15407/scine15.01.059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Pinho, Ricardo Martins Araujo, Edson Mauro Santos, Fleming Sena Campos, João Paulo de Farias Ramos, Carlos Henrique Oliveira Macedo, Higor Fábio Carvalho Bezerra und Alexandre Fernandes Perazzo. „Silages of pearl millet submitted to nitrogen fertilization“. Ciência Rural 44, Nr. 5 (Mai 2014): 918–24. http://dx.doi.org/10.1590/s0103-84782014000500025.

Der volle Inhalt der Quelle
Annotation:
This study aimed to evaluate the fermentation characteristics, losses and the chemical composition of two pearl millet genotypes silages submitted to nitrogen fertilization. The experimental design was a completely randomized blocks in a split plot scheme 2x5 (two nitrogen genotypes doses x five doses of nitrogen), with four replicates. Nitrogen doses were 0, 20, 40, 60, 80kg ha-1 and the pearl millet genotypes were the variety ADR300 and the hybrid ADR7010. The hybrid ADR 7010 showed average lactic acid content higher than the variety ADR 300, at all doses of N, recording values ranging from 4.09 to 10.46dag kg-1. There was an interaction between nitrogren doses and genotypes for the neutral detergent fiber, which ranged from 51.81 to 63.63dag kg-1 of dry matter. Dry matter recovery decreased linearly with increasing nitrogen doses only for hybrid ADR7010, the same did not happen for the ADR300. The nitrogen fertilization does not favor the fermentation characteristics and increases DM losses of the hybrid ADR7010.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Wicaksono, Adit Rizky, Yuni Kusumastuti und Jaka Widada. „The Effect of Polyurethane Multilayer Coating on Nitrogen Release from Controlled Release Fertilizer“. Key Engineering Materials 928 (16.08.2022): 95–101. http://dx.doi.org/10.4028/p-mam171.

Der volle Inhalt der Quelle
Annotation:
Nitrogen-based fertilizers are widely consumed to increase productivity since they play an essential role in plant growth. Common commercial fertilizers contain “mobile” nitrogens that can be easily transformed into other nitrogen compounds. The approach method to decrease nitrogen loss is called controlled-release fertilizer (CRF), which is done by modifying fertilizers with coating inhibitors such as polyurethane to provide surface resistance that inhibits nutrient release. Multilayer coating is one of the alternatives to minimize the risk of losing nitrogen content from granular fertilizer. This research will focus on the study of nitrogen release on the CRF modified by various polyurethane coating concentrations (6%, 8%, and 10%). The study was conducted by planting maize plants in a pot inside a greenhouse for nine weeks, followed by a nitrogen release test using a percolator. The morphology of final coating products was observed with scanning electron microscopy, while the mechanical properties and water content were measured with crushing strength test and water stability test. Three weeks after testing, polyurethane can reduce above 60% nitrogen release compared to uncoated fertilizer. After nine weeks since the maizes were planted, the nitrogen release will compare between inside the percolators’ simulation chambers and pot test to see the effect of polyurethane composition with nitrogen release pattern. The results show that the effective composition of polyurethane in CRF products is maximum at 8%w/w with nitrogen released above 75%. Keywords: controlled-release fertilizer, polyurethane multilayer coating, nitrogen release
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

&NA;. „Nitrogen“. Reactions Weekly &NA;, Nr. 1131 (Dezember 2006): 27. http://dx.doi.org/10.2165/00128415-200611310-00081.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

&NA;. „Nitrogen“. Reactions Weekly &NA;, Nr. 1199 (April 2008): 35. http://dx.doi.org/10.2165/00128415-200811990-00105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Jones, J. Benton. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1675–82. http://dx.doi.org/10.1080/01904168709363706.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Jacques, D. J., und J. C. Peterson. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1683–88. http://dx.doi.org/10.1080/01904168709363707.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Prasad, M., T. M. Spiers und R. E. Lill. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1689–97. http://dx.doi.org/10.1080/01904168709363708.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Coltman, Robert. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1699–704. http://dx.doi.org/10.1080/01904168709363709.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Scaife, A., und Mary Turner. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1705–12. http://dx.doi.org/10.1080/01904168709363710.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Liu, S. L., R. J. Volk und W. A. Jackson. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1713–22. http://dx.doi.org/10.1080/01904168709363711.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

van Beusichem, M. L., O. A. Nelemans und M. G. J. Hinnen. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1723–31. http://dx.doi.org/10.1080/01904168709363712.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Valenzuela, J. L., A. Sanchez und L. Romero. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1733–41. http://dx.doi.org/10.1080/01904168709363713.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Heins, B., und M. Schenk. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1743–51. http://dx.doi.org/10.1080/01904168709363714.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Greenwood, D. J., Ann Draycott und J. J. Neeteson. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1753–59. http://dx.doi.org/10.1080/01904168709363715.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Elliott, D. E., D. J. Reuter, B. Growden, J. E. Schultz, P. H. Muhlhan, J. Gouzos und D. L. Heanes. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1761–70. http://dx.doi.org/10.1080/01904168709363716.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Ponce, R. Gonzales, und A. Lamela. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1771–78. http://dx.doi.org/10.1080/01904168709363717.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Saric, Zora, M. Saric, M. Govedarica und Z. Stankovic. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1779–86. http://dx.doi.org/10.1080/01904168709363718.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Feigin, A., Irena Rylski, A. Meiri und J. Shalhevet. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1787–94. http://dx.doi.org/10.1080/01904168709363719.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Kannan, Seshadri, und Saradha Ramani. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1795–804. http://dx.doi.org/10.1080/01904168709363720.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Hasson, A. M., T. Hassaballah, R. Hussain und L. Abbass. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1805–9. http://dx.doi.org/10.1080/01904168709363721.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Hipp, Billy. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1811–17. http://dx.doi.org/10.1080/01904168709363722.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Nerson, Haim, Harry Paris und Menahem Edelstein. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1835–41. http://dx.doi.org/10.1080/01904168709363724.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Buwalda, J. G. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1843–51. http://dx.doi.org/10.1080/01904168709363725.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Kadman, A., und E. Tomer. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1853–57. http://dx.doi.org/10.1080/01904168709363726.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Lahav, E., D. Kalmar und Y. Bar. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1859–68. http://dx.doi.org/10.1080/01904168709363727.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Fleming, Alton, Donald Krizek und Roman Mirecki. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1869–81. http://dx.doi.org/10.1080/01904168709363728.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Esechie, Humphrey. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1883. http://dx.doi.org/10.1080/01904168709363729.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

MacKown, Charles, Thomas Rufty und Richard Volk. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1885. http://dx.doi.org/10.1080/01904168709363730.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Sharma, S. K. „Nitrogen“. Journal of Plant Nutrition 10, Nr. 9 (Juni 1987): 1887. http://dx.doi.org/10.1080/01904168709363731.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Banks, Alton. „Nitrogen“. Journal of Chemical Education 67, Nr. 3 (März 1990): 215. http://dx.doi.org/10.1021/ed067p215.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

NAGLER, PETER. „NITROGEN“. Chemical & Engineering News 81, Nr. 36 (08.09.2003): 44. http://dx.doi.org/10.1021/cen-v081n036.p044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Luttrell, William E. „Nitrogen“. Journal of Chemical Health and Safety 22, Nr. 2 (März 2015): 32–34. http://dx.doi.org/10.1016/j.jchas.2015.01.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Smith, Barry E. „Nitrogen and diversity biological nitrogen fixation“. Trends in Biochemical Sciences 18, Nr. 3 (März 1993): 109–10. http://dx.doi.org/10.1016/0968-0004(93)90165-j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

DILEEP KACHROO und RAVINDER RAZDAN. „Growth, nutrient uptake and yield of wheat (Triticum aestivum) as influenced by biofertilizers and nitrogen“. Indian Journal of Agronomy 51, Nr. 1 (10.10.2001): 37–39. http://dx.doi.org/10.59797/ija.v51i1.4962.

Der volle Inhalt der Quelle
Annotation:
A field experiment was conducted during the winter season of 1999-2000 and 2000-01 at research farm, Sher-e-Kashmir University of Agricultural Sciences and Technology, R.S. Pura, Jammu, to study the effect of biofertilizers and nitrogen levels on growth, yield attributes, yield and nitroigen-use efficiency of 'PBW 343' wheat (Triticum aestivum L. emend. Fiori & Paol). Combined inoculation of Azotobacter + Azospirillum in 1 : 1 ra- tio increased the growth, yield attributes and yield significantly. The nitrogen-use efficiency values also were higher. Each unit increase in N level led to significant increase in growth, yield-attributing characters and yield of wheat. The maximum grain yield (53.55 qlha) was recorded with highest N level. The nitrogen-use efficiency (NUE), apparent N recovery (%), nitrogen-efficiency ratio (NER) and physiological efficiency index of absorbed nitrogen (PEIN) were higher up to 80 kg Nlha and thereafter decreased with increasing N level.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Castiñeiras, Alfonso, Maria Gil, Elena Bermejo und Douglas X. West. „Structural and Spectral Studies of Palladium (II) Complexes of Pyridil bis{3-Piperidyl-, bis{Hexamethyleneiminyl-, bis{N(4)-Diethyl- and bis{N(4)-Dipropylthiosemicarbazone}“. Zeitschrift für Naturforschung B 55, Nr. 9 (01.09.2000): 863–70. http://dx.doi.org/10.1515/znb-2000-0910.

Der volle Inhalt der Quelle
Annotation:
Pyridil bis{N(4)-substituted thiosemicarbazones}, in which the substituents replacing the NH2 group on the thiosemicarbazone moieties are piperidyl, H2Plpip; hexamethyleneiminyl, H2Plhexim; diethylamino, H2Pl4DE; and dipropylamino, H2PI4 DP, have been synthesized. Representative palladium(II) complexes of these bis (thiosemicarbazones) have been characterized by IR, electronic, mass, and 1H and 13C NMR spectroscopy. Crystal structures have been determined for H2Plhexim and two of its palladium(II) complexes. H2Plhexim is in the Z isomeric form with intramolecular hydrogen bonding from both thiosemicarbazone moieties to pyridine nitrogens. [Pd(Plhexim)] has square-planar N2S2 coordination (i.e., imine nitrogen and thiolato sulfur atoms). [Pd2 (Plhexim)Cl2 · DMSO has two PdNNSCl centers with the pyridine nitrogen, imine nitrogen or hydrazinic nitrogen and thiolato sulfur atoms coordinated
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Blomqvist, Peter, Annette Pettersson und Per Hyenstrand. „Ammonium-nitrogen: A key regulatory factor causing dominance of non-nitrogen-fixing cyanobacteria in aquatic systems“. Archiv für Hydrobiologie 132, Nr. 2 (21.12.1994): 141–64. http://dx.doi.org/10.1127/archiv-hydrobiol/132/1994/141.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie