Zeitschriftenartikel zum Thema „Nitrogen Metabolism“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Nitrogen Metabolism.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Nitrogen Metabolism" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Takahashi, Mikio, und Yatsuka Saijo. „Nitrogen metabolism in Lake Kizaki, Japan V. The role of nitrogen fixation in nitrogen requirement of phytoplankton“. Archiv für Hydrobiologie 112, Nr. 1 (24.03.1988): 43–54. http://dx.doi.org/10.1127/archiv-hydrobiol/112/1988/43.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Scott, TA. „Inorganic Nitrogen Metabolism“. Biochemical Education 16, Nr. 1 (Januar 1988): 54. http://dx.doi.org/10.1016/0307-4412(88)90042-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Elmerich, C. „Inorganic nitrogen metabolism“. Biochimie 70, Nr. 8 (August 1988): 1121–22. http://dx.doi.org/10.1016/0300-9084(88)90275-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Roberts, E. H. „Inorganic nitrogen metabolism“. Agricultural Systems 27, Nr. 4 (Januar 1988): 318. http://dx.doi.org/10.1016/0308-521x(88)90041-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Johnson, C. B. „Inorganic nitrogen metabolism“. Phytochemistry 27, Nr. 5 (Januar 1988): 1569. http://dx.doi.org/10.1016/0031-9422(88)80250-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kimble, Linda K., und Michael T. Madigan. „Nitrogen fixation and nitrogen metabolism in heliobacteria“. Archives of Microbiology 158, Nr. 3 (August 1992): 155–61. http://dx.doi.org/10.1007/bf00290810.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

IWATA, Katsuya. „Nitrogen metabolism of fishes.“ Hikaku seiri seikagaku(Comparative Physiology and Biochemistry) 15, Nr. 3 (1998): 184–92. http://dx.doi.org/10.3330/hikakuseiriseika.15.184.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fagard, M., A. Launay, G. Clement, J. Courtial, A. Dellagi, M. Farjad, A. Krapp, M. C. Soulie und C. Masclaux-Daubresse. „Nitrogen metabolism meets phytopathology“. Journal of Experimental Botany 65, Nr. 19 (30.07.2014): 5643–56. http://dx.doi.org/10.1093/jxb/eru323.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bonete, María, Rosa Martínez-Espinosa, Carmen Pire, Basilio Zafrilla und David J. Richardson. „Nitrogen metabolism in haloarchaea“. Saline Systems 4, Nr. 1 (2008): 9. http://dx.doi.org/10.1186/1746-1448-4-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Oaks, A., und B. Hirel. „Nitrogen Metabolism in Roots“. Annual Review of Plant Physiology 36, Nr. 1 (Juni 1985): 345–65. http://dx.doi.org/10.1146/annurev.pp.36.060185.002021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Benyajati, Siribhinya. „Nitrogen metabolism and excretion“. Trends in Endocrinology & Metabolism 7, Nr. 4 (Mai 1996): 153–54. http://dx.doi.org/10.1016/1043-2760(96)85670-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Smith, Terence A. „Nitrogen metabolism of plants“. Phytochemistry 33, Nr. 1 (April 1993): 251. http://dx.doi.org/10.1016/0031-9422(93)85438-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Slaytor, Michael, und Douglas J. Chappell. „Nitrogen metabolism in termites“. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 107, Nr. 1 (Januar 1994): 1–10. http://dx.doi.org/10.1016/0305-0491(94)90218-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Dhillon, K. S., B. A. Yagodeen und V. A. Vernichenko. „Micronutrients and nitrogen metabolism“. Plant and Soil 103, Nr. 1 (März 1987): 51–55. http://dx.doi.org/10.1007/bf02370667.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Sui, Yanghui, Jiping Gao und Quanyu Shang. „Characterization of nitrogen metabolism and photosynthesis in a stay-green rice cultivar“. Plant, Soil and Environment 65, No. 6 (19.06.2019): 283–89. http://dx.doi.org/10.17221/202/2019-pse.

Der volle Inhalt der Quelle
Annotation:
A field experiment was carried out in the years 2008–2011 in China to assess the nitrogen metabolism enzyme activities and photosynthetic characteristics in stable-yielding stay-green rice (Oryza sativa L.) cv. Shennong196. The results showed that higher levels of nitrogen content, nitrate reductase activity, and glutamine synthetase activity occurred in leaves of cv. Shennong196 compared with cv. Toyonishiki (control). Leaf color of cv. Shennong196 was positively correlated with nitrogen levels and nitrogen metabolism enzyme activities (P &lt; 0.05). Superoxide dismutase activity and malondialdehyde contents were 18.53 unit/g fresh weight and 3.32 nmol/g, respectively, which were lower in flag leaves of cv. Shennong196 than cv. Toyonishiki. Cv. Shennong196 had a higher level of net photosynthetic rate, stomatal conductance, intercellular CO<sub>2</sub> concentration, and transpiration rate in flag leaves of diurnal variation of photosynthesis at the ripening stage. The high net photosynthetic rate in cv. Shennong196 was positively correlated with the stomatal density of flag leaves (P &lt; 0.01). Considering the yield-increasing potential and to prevent premature senescence of crop, these traits of cv. Shennong196 are useful for improved rice cultivar.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Bach, A., S. Calsamiglia und M. D. Stern. „Nitrogen Metabolism in the Rumen“. Journal of Dairy Science 88 (April 2005): E9—E21. http://dx.doi.org/10.3168/jds.s0022-0302(05)73133-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

van Kempen, T. A. T. G., D. H. Baker und E. van Heugten. „Nitrogen losses in metabolism trials“. Journal of Animal Science 81, Nr. 10 (01.10.2003): 2649–50. http://dx.doi.org/10.2527/2003.81102649x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Feller, Urs, und Andreas Fischer. „Nitrogen Metabolism in Senescing Leaves“. Critical Reviews in Plant Sciences 13, Nr. 3 (Januar 1994): 241–73. http://dx.doi.org/10.1080/07352689409701916.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Feller, Urs. „Nitrogen metabolism - the ecological context“. New Phytologist 151, Nr. 2 (August 2001): 318. http://dx.doi.org/10.1046/j.0028-646x.2001.00203.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Richardson, David J., und Nicholas J. Watmough. „Inorganic nitrogen metabolism in bacteria“. Current Opinion in Chemical Biology 3, Nr. 2 (April 1999): 207–19. http://dx.doi.org/10.1016/s1367-5931(99)80034-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Feller, U., und A. Fischer. „Nitrogen Metabolism in Senescing Leaves“. Critical Reviews in Plant Sciences 13, Nr. 3 (1994): 241. http://dx.doi.org/10.1080/713608059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Maghrabi, Y. M. S., A. E. Younis und F. S. Abozinah. „Nitrogen metabolism in tomato seedlings“. Plant and Soil 85, Nr. 3 (Oktober 1985): 395–402. http://dx.doi.org/10.1007/bf02220194.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Maghrabi, Y. M. S., A. E. Younis und F. S. Abozinah. „Nitrogen metabolism in tomato seedlings“. Plant and Soil 85, Nr. 3 (Oktober 1985): 403–11. http://dx.doi.org/10.1007/bf02220195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Mitch, William E., und Y. Hara. „Abnormal nitrogen metabolism in uremia“. Journal of Japanese Society for Dialysis Therapy 21, Nr. 12 (1988): 1097–101. http://dx.doi.org/10.4009/jsdt1985.21.1097.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Kucherenko, M. „Nitrogen metabolism in saline soils“. Актуальные направления научных исследований XXI века: теория и практика 3, Nr. 2 (01.05.2015): 46–49. http://dx.doi.org/10.12737/11027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Lorenzi, M., A. De Martino, F. Carlucci, A. Tabucchi, B. Porcelli, M. Pizzichini, E. Marinell und R. Pagani. „Nitrogen metabolism during liver regeneration“. Biochimica et Biophysica Acta (BBA) - General Subjects 1157, Nr. 1 (Mai 1993): 9–14. http://dx.doi.org/10.1016/0304-4165(93)90072-g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Razal, Ramon A., Shona Ellis, Santokh Singh, Norman G. Lewis und G. H. Neil Towers. „Nitrogen recycling in phenylpropanoid metabolism“. Phytochemistry 41, Nr. 1 (Januar 1996): 31–35. http://dx.doi.org/10.1016/0031-9422(95)00628-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Meirinawati, Hanny. „TRANSFORMASI NITROGEN DI LAUT“. OSEANA 42, Nr. 1 (30.04.2019): 36–46. http://dx.doi.org/10.14203/oseana.2017.vol.42no.1.37.

Der volle Inhalt der Quelle
Annotation:
NITROGEN TRANSFORMATION IN MARINE ENVIRONMENT. Nitrogen transformations are undertaken by marine organisms as part of their metabolisms, either to obtain nitrogen to synthesize structural components or to gain energy for their growth. Nitrogen can stimulate primer productivity in an aquatic ecosystem. Increasing human activities can cause the increase of the number of nitrogen in the ocean. The increased input of nitrogen which is often accompanied by oxygen limitation has a strong negative effect on benthic metabolism and nitrogen mineralization. The ocean’s nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox (anaerobic ammonium oxidation) and denitrification.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Kiyota, H., S. Otsuka, A. Yokoyama, S. Matsumoto, H. Wada und S. Kanazawa. „Effects of highly volatile organochlorine solvents on nitrogen metabolism and microbial counts“. Soil and Water Research 7, No. 3 (10.07.2012): 109–16. http://dx.doi.org/10.17221/30/2011-swr.

Der volle Inhalt der Quelle
Annotation:
The effects of highly volatile organochlorine solvents (1,1,1-trichloroethane, TCET; trichloroethylene, TCE; and tetrachloroethylene, PCE) on soil nitrogen cycle and microbial counts were investigated using volcanic ash soil with different fertilizations. All the solvents significantly inhibited the activity of the cycle under the sealed conditions with 10 to 50 mg/g (dry soil) solvents added. No significant difference between the solvents, and between fertilization plots, was observed. Nitrate ion was not accumulated, and instead, ammonium ion was highly accumulated in the presence of the solvents. Nitrite ion was partially detected, while l-glutaminase activity was inhibited. The growths of ammonification, nitritation, nitratation and denitrification bacteria, and filamentous fungi were significantly inhibited in the presence of 10 mg/g (dry soil) of the solvents.&nbsp;
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Gurbanova, Ulduza A., Shahniyar M. Bayramov, Novruz M. Guliev und Irada M. Huseynova. „Changes in Some Carbon and Nitrogen Metabolism Enzymes in Field-Grown Wheat“. Indian Journal of Science and Technology 14, Nr. 43 (12.11.2021): 3237–45. http://dx.doi.org/10.17485/ijst/v14i43.1128.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Shawky, B. T., Y. Ghali, F. A. Ahmed und T. Kahil. „Ammonium-nitrogen metabolism and nitrogen fixation in azotobacter vinelandii“. Acta Biotechnologica 7, Nr. 6 (1987): 555–62. http://dx.doi.org/10.1002/abio.370070617.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Wang, H., Z. Wu, Y. Zhou, J. Han und D. Shi. „  Effects of salt stress on ion balance and nitrogen metabolism in rice“. Plant, Soil and Environment 58, No. 2 (05.03.2012): 62–67. http://dx.doi.org/10.17221/615/2011-pse.

Der volle Inhalt der Quelle
Annotation:
The aim of this study was to test the effects of salt stress on nitrogen metabolism and ion balance in rice plants. The contents of inorganic ions, total amino acids, and NO<sub>3</sub><sup>&ndash;</sup>&nbsp;in the stressed seedlings were then measured. The expressions of some critical genes involved in nitrogen metabolism were also assayed to test their roles in the regulation of nitrogen metabolism during adaptation of rice to salt stress. The results showed that when seedlings were subjected to salt stress for 4 h, in roots, salt stress strongly stimulated the accumulations of Na<sup>+</sup> and Cl<sup>&ndash;</sup>, and reduced K<sup>+</sup> content; however, in leaves, only at 5 days these changes were observed. This confirmed that the response of root to salt stress was more sensitive than that of leaf. When seedlings were subjected to salt stress for 4 h, salt stress strongly stimulated the expression of OsGS1;1, OsNADH-GOGAT, OsAS, OsGS1;3, OsGDH1, OsGDH2, OsGDH3 in both leaves and roots of rice, after this time point their expression decreased. Namely, at 5 days most of genes involved in NH<sub>4</sub><sup>+</sup>&nbsp;assimilation were downregulated by salt stress, which might be the response to NO<sub>3</sub><sup>&ndash;</sup>&nbsp;change. Salt stress did not reduce NO<sub>3</sub><sup>&ndash;</sup>&nbsp;contents in both roots and leaves at 4 h, whereas at 5 days salt stress mightily decreased the NO<sub>3</sub><sup>&ndash;</sup>&nbsp;contents. The deficiencies of NO<sub>3</sub><sup>&ndash;</sup>&nbsp;in both roots and leaves can cause a large downregulation of OsNR1 and the subsequent reduction of NH<sub>4</sub><sup>+</sup>&nbsp;production. This event might immediately induce the downregulations of the genes involved in NH<sub>4</sub><sup>+</sup>&nbsp;assimilation. &nbsp;
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

LORENZO, H., J. M. SIVERIO und M. CABALLERO. „Salinity and nitrogen fertilization and nitrogen metabolism in rose plants“. Journal of Agricultural Science 137, Nr. 1 (August 2001): 77–84. http://dx.doi.org/10.1017/s0021859601001150.

Der volle Inhalt der Quelle
Annotation:
Rose production is limited by salinity and highly affected by the nitrogen source present in the nutrient solution. The influence of sodium on several aspects of nutrition has been investigated in ‘Lambada' rose plants using different sources of nitrogen in the fertilization treatment. Experiments using a previously defined mono-shoot model plant and a simplified hydroponic culture allowed us to study the effects of salinity v. nitrogen on NPK uptake during the culture period. Mineral concentrations, nitrate reductase (NR) and glutamine synthetase (GS) activities were also analysed. This study showed that rose plants were more sensitive to saline conditions under NH4+ fertilization without detectable effects on growth or in NPK mineral contents in shoots. Parameters affected most were enzymatic activities analysed such as leaf nitrate reductase activity which was reduced under NH4+ nutrition. Leaf glutamine synthetase was also enhanced by saline conditions. The Na/K ratio showed that under NH4+ nutrition, the highest sodium accumulation occurred in roots. Nitrate uptake did not show a clear pattern related to nitrogen source, however, ammonium uptake was affected by salinity when NH4+ was the sole nitrogen source in the nutrient solution. Potassium and phosphate uptake were always lower when NH4+ was present in the nutrient solution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Manuel Ruiz, Juan, und Luis Romero. „Cucumber yield and nitrogen metabolism in response to nitrogen supply“. Scientia Horticulturae 82, Nr. 3-4 (Dezember 1999): 309–16. http://dx.doi.org/10.1016/s0304-4238(99)00053-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Stephen, Alison M. „Dietary fibre and colonic nitrogen metabolism“. Scandinavian Journal of Gastroenterology 22, sup129 (Januar 1987): 110–15. http://dx.doi.org/10.3109/00365528709095862.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Turner, John G., Rihab R. Taha und Jill Debbage. „Effects of tabtoxin on nitrogen metabolism“. Physiologia Plantarum 67, Nr. 4 (August 1986): 649–53. http://dx.doi.org/10.1111/j.1399-3054.1986.tb05072.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Weber, F. L. „Effects of Lactulose on Nitrogen Metabolism“. Scandinavian Journal of Gastroenterology 32, sup222 (Januar 1997): 83–87. http://dx.doi.org/10.1080/00365521.1997.11720726.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Walt, JGvan der. „Nitrogen metabolism of the ruminant liver“. Australian Journal of Agricultural Research 44, Nr. 3 (1993): 381. http://dx.doi.org/10.1071/ar9930381.

Der volle Inhalt der Quelle
Annotation:
This review examines both the quantitative flux of nitrogenous compounds from the portaldrained viscera (PDV) to the liver and the metabolic pathways within these tissues that facilitate interactions between these compounds. In order to estimate the flow of material between organs, it is necessary to be able to measure the rate of blood flow perfusing the organ under investigation. Methods of estimating blood flow are discussed. In general, splanchnic blood flow (c. 125 mL min-1kg-0.75 at maintenance feeding) is proportional to the intake of energy. Although the splanchnic bed only constitutes 7-13% of total body mass, it uses 4040% of total oxygen demand. Dietary protein (60-90%) and non-protein nitrogen (c. 100%) are both degraded to ammonia in the rumen, which is incorporated into microbial protein (50-70% derived from ammonia). The composition and amount of microbial protein is relatively constant and independent of the intake and composition of feed protein. Essential amino acids may be supplied to the animal via the undegraded feed protein fraction passing to the small intestine. Urea may be recycled to the rumen, in proportion to the plasma concentration, via saliva or directly by diffusion through the rumen wall in a ratio that lies between 2:l and 5:l. Any production of urea that raises its plasma concentration above 112 mg NL- may be taken up by the postruminal tract. A large amount of ammonia (0.04 to 0.25 g N day-1kg-0.75 proportional to nitrogen intake (from 0.45 to 2.65 g N day-1kg-0.75) and between 0.4 and 6.5 times higher than all the �-amino linked acids taken up by the PDV, may be absorbed from the rumen. As much as 1.8 to 2.3 g N day-1kg-0.75 for an intake of 1 g N day-1kg-0.75 may flow from the abomasum to the small intestine. Of this total nitrogen, between 0.60 and 1.36 g N day-1kg-0.75 represents �-linked amino acids. The increase above basal values largely represents unfermented feed protein. Amino acids and small peptides are absorbed mainly from mid to lower ileum. Most amino acids appear to be at least partially metabolized in passage through the gut wall (between about 56 and 68% in sheep fed a low or a high protein diet respectively). In particular, glutamine contributes at least as much as glucose to the energy metabolism of the splanchnic bed. Although relatively large amounts of-urea enter the small intestine (in proportion to blood urea concentration), a lack of significant urease activity suggests that most is reabsorbed. Between 0.6 and 0.9 g N day-1kg-0.75 (40 to 60% as amino acids, 15% as urea and 1 to 13% as ammonia) enters the caecum. Another 0.15 g N day-1kg-0.75 of urea may enter from the blood. Increasing the energy supply to hindgut fermentation will increase faecal excretion of nitrogen, while decreasing the concentration of urinary urea. Nitrogen is absorbed in net amounts, mainly as ammonia, from the hindgut (0.04 to 0.16 g N day-1kg-0.75) Net flux of ammonia, urea and the a-linked amino acids (0.47 to 0.59; -0.39 to -1.12 and 0.26 to 0.44 g N day-1kg-0.75 respectively) from this region appears to be proportional to nitrogen intake (0.74 to 2.90 g N day-1kg-0.75) The flux of amino acids in particular seemed to increase only at nitrogen intakes above 2 g N day-1kg-0.75 Glucogenic amino acids are taken up in net amounts from the PDV (e.g. 3 to 103 mg N day-1kg-0.75 for alanine), as are essential amino acids, albeit in smaller amounts (-2 to 62 mg N day-1kg-0.75 for leucine). Glutamine is utilized by the PDV in most studies (-45 to -230 mg N day-1kg-0.75 Net uptake of ammonia by the liver almost exactly balances the amount produced by the PDV. The proportion of the net flux of amino acids from the PDV that is taken up by the liver varies from about 20% to more than l00%, the amount retained being proportional to the nitrogen intake of the animal. Of the individual amino acids, large amounts of the glucogenic acids are removed (e.g. 50 to 200 mg N day-1kg-0.75 for alanine). Arginine may also be removed in similar amounts, at least some of which, like the glucogenic acids, must come from peripheral tissues. Conflicting results have been reported for hepatic flux of glutamine. The role of gluconeogenesis, transdeamination and the urea cycle is discussed in relation to the function of the liver as an organ integrating the nitrogen and energy metabolism of the animal. Possible mechanisms, other than the accepted hypothesis of urea recycling, are proposed to explain nitrogen recycling in ruminants. It is clear that animal scientists must take into account, together with the fermentative processes in the rumen and hindgut, the contribution of the host animal to the overall balance of nitrogen.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

van Heerden, Pieter S., G. H. Neil Towers und Norman G. Lewis. „Nitrogen Metabolism in LignifyingPinus taedaCell Cultures“. Journal of Biological Chemistry 271, Nr. 21 (24.05.1996): 12350–55. http://dx.doi.org/10.1074/jbc.271.21.12350.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Hörtensteiner, Stefan, und Urs Feller. „Nitrogen metabolism and remobilization during senescence“. Journal of Experimental Botany 53, Nr. 370 (15.04.2002): 927–37. http://dx.doi.org/10.1093/jexbot/53.370.927.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Walker, Robert P., Paolo Benincasa, Alberto Battistelli, Stefano Moscatello, László Técsi, Richard C. Leegood und Franco Famiani. „Gluconeogenesis and nitrogen metabolism in maize“. Plant Physiology and Biochemistry 130 (September 2018): 324–33. http://dx.doi.org/10.1016/j.plaphy.2018.07.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Kurmi, Kiran, und Marcia C. Haigis. „Nitrogen Metabolism in Cancer and Immunity“. Trends in Cell Biology 30, Nr. 5 (Mai 2020): 408–24. http://dx.doi.org/10.1016/j.tcb.2020.02.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Ladd, J. N., R. C. Foster und J. O. Skjemstad. „Soil structure: carbon and nitrogen metabolism“. Geoderma 56, Nr. 1-4 (März 1993): 401–34. http://dx.doi.org/10.1016/0016-7061(93)90124-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

COLE, J. „Controlling environmental nitrogen through microbial metabolism“. Trends in Biotechnology 11, Nr. 8 (August 1993): 368–72. http://dx.doi.org/10.1016/0167-7799(93)90160-b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Dolomatov, S. I., P. V. Shekk, W. Zukow und M. I. Kryukova. „Features of nitrogen metabolism in fishes“. Reviews in Fish Biology and Fisheries 21, Nr. 4 (07.04.2011): 733–37. http://dx.doi.org/10.1007/s11160-011-9212-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Nehls, Uwe, und Claude Plassard. „Nitrogen and phosphate metabolism in ectomycorrhizas“. New Phytologist 220, Nr. 4 (11.06.2018): 1047–58. http://dx.doi.org/10.1111/nph.15257.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Morikawa, Hiromichi, Misa Takahashi, Atsushi Sakamoto, Manami Ueda-Hashimoto, Toshiyuki Matsubara, Kazuhiro Miyawaki, Yoshifumi Kawamura, Toshifumi Hirata und Hitomi Suzuki. „Novel Metabolism of Nitrogen in Plants“. Zeitschrift für Naturforschung C 60, Nr. 3-4 (01.04.2005): 265–71. http://dx.doi.org/10.1515/znc-2005-3-411.

Der volle Inhalt der Quelle
Annotation:
Abstract Our previous study showed that approximately one-third of the nitrogen of 15N-labeled NO2 taken up into plants was converted to a previously unknown organic nitrogen (hereafter designated UN) that was not recoverable by the Kjeldahl method (Morikawa et al., 2004). In this communication, we discuss metabolic and physiological relevance of the UN based on our newest experimental results. All of the 12 plant species were found to form UN derived from NO2 (about 10-30% of the total nitrogen derived from NO2). The UN was formed also from nitrate nitrogen in various plant species. Thus, UN is a common metabolite in plants. The amount of UN derived from NO2 was greatly increased in the transgenic tobacco clone 271 (Vaucheret et al., 1992) where the activity of nitrite reductase is suppressed less than 5% of that of the wild-type plant. On the other hand, the amount of this UN was significantly decreased by the overexpression of S-nitrosoglutathione reductase (GSNOR). These findings strongly suggest that nitrite and other reactive nitrogen species are involved in the formation of the UN, and that the UN-bearing compounds are metabolizable. A metabolic scheme for the formation of UN-bearing compounds was proposed, in which nitric oxide and peroxynitrite derived from NO2 or endogenous nitrogen oxides are involved for nitrosation and/or nitration of organic compounds in the cells to form nitroso and nitro compounds, including N-nitroso and S-nitroso ones. Participation of non-symbiotic haemoglobin bearing peroxidase-like activity (Sakamoto et al., 2004) and GSNOR (Sakamoto et al., 2002) in the metabolism of the UN was discussed. The UN-bearing compounds identified to date in the extracts of the leaves of Arabidopsis thaliana fumigated with NO2 include a ⊿2- 1,2,3-thiadiazoline derivative (Miyawaki et al., 2004) and 4-nitro-β-carotene.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Meijer, A. J., W. H. Lamers und R. A. Chamuleau. „Nitrogen metabolism and ornithine cycle function“. Physiological Reviews 70, Nr. 3 (01.07.1990): 701–48. http://dx.doi.org/10.1152/physrev.1990.70.3.701.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Lignell, �ke, und Marianne Peders�n. „Nitrogen metabolism in Gracilaria secundata Harv.“ Hydrobiologia 151-152, Nr. 1 (September 1987): 431–41. http://dx.doi.org/10.1007/bf00046164.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Márquez, Javier, Francisca Sánchez-Jiménez, Miguel Angel Medina, Ana R. Quesada und Ignacio Núñez de Castro. „Nitrogen metabolism in tumor bearing mice“. Archives of Biochemistry and Biophysics 268, Nr. 2 (Februar 1989): 667–75. http://dx.doi.org/10.1016/0003-9861(89)90335-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie