Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Nitrogen Fixation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Nitrogen Fixation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Nitrogen Fixation"
Nagiev, T. M., N. I. Ali-zadeh, L. M. Gasanova, I. T. Nagieva, Ch A. Mustafaeva, N. N. Malikova, A. A. Abdullaeva und E. S. Bakhramov. „NITROGEN FIXATION AT CONJUGATED OXIDATION“. Azerbaijan Chemical Journal, Nr. 2 (2018): 6–10. http://dx.doi.org/10.32737/0005-2531-2018-2-6-10.
Der volle Inhalt der QuelleO'GARA, FERGAL. „Nitrogen Fixation“. Biochemical Society Transactions 13, Nr. 3 (01.06.1985): 639. http://dx.doi.org/10.1042/bst0130639a.
Der volle Inhalt der QuelleWen-Yue Hsiung. „Nitrogen Fixation“. Forest Ecology and Management 10, Nr. 4 (Mai 1985): 348–50. http://dx.doi.org/10.1016/0378-1127(85)90127-6.
Der volle Inhalt der QuelleBecker, James Y., und Shlomit Avraham (Tsarfaty). „Nitrogen fixation“. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 280, Nr. 1 (Februar 1990): 119–27. http://dx.doi.org/10.1016/0022-0728(90)87088-2.
Der volle Inhalt der QuelleBecker, James Y., Shlomit Avraham (Tsarfaty) und Barry Posin. „Nitrogen fixation“. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 230, Nr. 1-2 (August 1987): 143–53. http://dx.doi.org/10.1016/0022-0728(87)80138-9.
Der volle Inhalt der QuelleBecker, James Y., und Barry Posin. „Nitrogen fixation“. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 250, Nr. 2 (August 1988): 385–97. http://dx.doi.org/10.1016/0022-0728(88)85178-7.
Der volle Inhalt der QuelleDavis, Lawrence C. „Fundamentals of nitrogen fixation an introduction to nitrogen fixation“. Trends in Biochemical Sciences 12 (Januar 1987): 451–52. http://dx.doi.org/10.1016/0968-0004(87)90216-7.
Der volle Inhalt der QuelleSmith, B. E. „Fertilizer fixation nitrogen fixation in plants“. Trends in Biochemical Sciences 12 (Januar 1987): 36. http://dx.doi.org/10.1016/0968-0004(87)90018-1.
Der volle Inhalt der QuelleSprent, J. I., und M. Alexander. „Biological Nitrogen Fixation.“ Journal of Applied Ecology 22, Nr. 2 (August 1985): 601. http://dx.doi.org/10.2307/2403193.
Der volle Inhalt der QuelleMylona, Panagiota, Katharina Pawlowski und Ton Bisseling. „Symbiotic Nitrogen Fixation“. Plant Cell 7, Nr. 7 (Juli 1995): 869. http://dx.doi.org/10.2307/3870043.
Der volle Inhalt der QuelleDissertationen zum Thema "Nitrogen Fixation"
Supeno. „Sonochemical fixation of nitrogen“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0016/MQ57783.pdf.
Der volle Inhalt der QuelleSupeno, Carleton University Dissertation Chemistry. „Sonochemical fixation of nitrogen“. Ottawa, 2000.
Den vollen Inhalt der Quelle findenKlawonn, Isabell. „Marine nitrogen fixation : Cyanobacterial nitrogen fixation and the fate of new nitrogen in the Baltic Sea“. Doctoral thesis, Stockholms universitet, Institutionen för ekologi, miljö och botanik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-122080.
Der volle Inhalt der QuelleAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.
H, Boström Kjärstin. „Nitrogen fixation among marine bacterioplankton“. Doctoral thesis, Högskolan i Kalmar, Naturvetenskapliga institutionen, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:hik:diva-24.
Der volle Inhalt der QuelleÖstersjön är ett av världens största brackvattensystem. Den ekologiska balansen i detta hav är hotad på grund av övergödning. Mycket arbete har därför fokuserats på att reducera utsläppen av näringsämnen, speciellt kväve. Dessa ansträngningar kan dock motverkas av bakterier som har förmåga att omvandla luftens kväve till metaboliskt användbart ammonium (kvävefixering). På sommaren är Östersjöns primärproduktion begränsad av kväve, med följden att det årligen uppstår massiva blomningar av kvävefixerande bakterier, framför allt cyanobakterier. Dessa är främst Aphanizomenon och Nodularia, men inte endast de fototrofa cyanobakterierna har förutsättningar att fixera N2. NifH gener (genen som kodar för nitrogenas) bärs också av heterotrofa bakterioplankton, vilket har visats i studier i främst Atlanten och Stilla havet. Med hjälp av två olika odlingsmetoder lyckades vi isolera heterotrofa kvävefixerande bakterier tillhörande klassen γ-proteobakteria från Östersjön. Svårigheten med att finna dessa bakterier ligger i att de kräver en miljö med mycket låg syrehalt för att kunna fixera kväve. Resultaten från denna studie ledde oss vidare till att undersöka vilka organismer som uttrycker nifH genen (och då troligen även fixerar kväve) i Östersjön. En av de bakterier som isolerats kunde påvisas med Realtids PCR i ett relativt stort antal (3 x 104 nifH genkopior per liter) vid en av de ursprungliga provtagningsstationerna. För att söka rätt på de olika organismtyper som uttrycker nifH skapades ett klonbibliotek baserat på mRNA extraherat från havsvatten. Det visade sig då att alla de närmare 100 kloner som sekvenserades tillhörde antingen Aphanizominon eller Nodularia. De heterotrofa bakteriernas nifH genuttryck var troligen i jämförelse med dessa cyanobakterier alltför lågt för att kunna detekteras. Realtids PCR mätningar av Nodularias nifH genuttryck visade på en stor variation mellan de olika provtagningsstationerna samt mellan de olika provtagningstillfällena. Vi fann dock en kraftig ökning under juli med en nedgång igen i augusti. En dygnscykelstudie visade att Nodularia nifH genuttrycket ökade under förmiddagen med en topp mitt på dagen för att sedan minska igen. Detta troligen med anledning av att den energikrävande kvävefixeringsprocessen sker under de ljusa timmarna då cellen får energi från fotosyntesen. I de molekylärbiologiska metoderna som används för att få information om identitet och aktivitet hos skilda organismer krävs att DNA och RNA kan extraheras från prover tagna i naturliga vattenmiljöer. Även om antalet bakterier tillsynes är högt, så är mängden DNA och RNA per liter havsvatten relativt låg, därför krävs ett väl fungerande protokoll för denna extraktion. I en inledande studie i denna avhandling optimerades en metod för att utvinna DNA. Ett antal sådana protokoll finns publicerade men dessa har ofta lågt utbyte. Det nya protokollet har hög effektivitet, vilket gör att små provvolymer kan användas (2 ml jämfört med tidigare flera liter) och därmed ökar hanterbarheten. Vi visar i denna studie att varje steg 7 i DNA-extraktionsprotokollet är viktigt för att ge en hög effektivitet. Detta protokoll kan med fördel användas som vägledning för många olika typer av studier. På grund av att många havsbakterier inte kan bilda kolonier och alltså inte växa på traditionella medier har det varit svårt att få en klar bild av artrikedomen. Molekylärbiologin har dock gjort det möjligt att identifiera bakterier med hjälp av 16S rRNA genen, en enorm mängd gensekvenser från världens alla hav har inkommit till den gemensamma databanken (GenBank). År 2002 gjordes en studie där man sammanställde informationen i denna databank, för att få en bild av artrikedomen i världshaven. Resultatet av denna studie var att det i världshaven fanns färre bakterietyper än vad många forskare har spekulerat i. I denna avhandlig har vi utfört en studie där vi gjorde en stor global provtagning för att se om denna undersökning överensstämde med den datainformativa. Provtagning från nio lokaliteter gjordes i de tempererade, tropiska och polarhaven. Ett genbibliotek från varje lokal gjordes och kloner sekvenserades. Resultatet visar i likhet med den datainformativa undersökningen på en begränsad artrikedom. 80% av gensekvenserna fanns redan i databanken, vilket tyder på att de flesta arter redan har blivit funna. Dessutom visade det sig att få av bakterierna återfanns på alla ställen och många återfanns endast på ett ställe. Utöver detta visade det sig att det fanns en ökad artrikedom ju närmare ekvatorn man kom, vilket tidigare har visats för större organismer. Studierna i denna avhandling har ökat förståelsen för hur sammansättningen av det kvävefixerande bakteriesamhället i Östersjön ser ut samt bidragit till diskussionen om den globala artrikedomen bland bakterioplakton och dess utbredning.
Crosswhite, F. S., und C. D. Crosswhite. „Nitrogen Fixation in Desert Legumes“. University of Arizona (Tucson, AZ), 1988. http://hdl.handle.net/10150/609108.
Der volle Inhalt der QuelleMonteiro, Fanny. „Mechanistic models of oceanic nitrogen fixation“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/53104.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 163-185).
Oceanic nitrogen fixation and biogeochemical interactions between the nitrogen, phosphorus and iron cycles have important implications for the control of primary production and carbon storage in the ocean. The biological process of nitrogen fixation is thought to be particularly important where the ocean is nitrogen limited and oligotrophic. This thesis examines some of the mechanisms responsible for the distribution, rates and temporal variability of nitrogen fixation and its geochemical signature in the modern ocean. I employ simple analytical theories and numerical models of ecosystems and biogeochemical cycles, and closely refer to direct observations of the phytoplanktonic community and geochemical tracers of the marine nitrogen cycle. Time-series observations of geochemical tracers and abundances of nitrogen fixers (or diazotrophs) in the northern subtropical gyres suggest variability in nitrogen fixation on interannual and longer timescales. I use a highly idealized, two-layer model of the nitrogen and phosphorus biogeochemistry and ecology of a subtropical gyre to explore the previously proposed hypothesis that such variability is regulated by an internal biogeochemical oscillator. I find, in certain parameter regimes, self-sustained oscillations in nitrogen fixation, community structure and biogeochemical cycles even with perfectly steady physical forcing. The period of the oscillations is strongly regulated by the exchange rate between the thermocline and mixed-layer waters, suggesting a period of several years to several decades for the North Pacific subtropical gyre regime, but would likely be shorter (only a year or so) for the North Atlantic Ocean.
(cont.) Geochemical tracers such as DINxs (=NO3--16PO3-) measure the oceanic departure from the Redfield ratio. DINx, is often used to estimate the rate of nitrogen fixation in the ocean, by quantifying the tracer accumulation along isopycnals. However this tracer reflects an interwoven set of processes including nitrogen fixation, but also denitrification, atmospheric and riverine sources, differential remineralization and complex transport pathways. I examine analytical solutions of the prognostic equation of DINx, and an idealized three-dimensional model of the basin-scale circulation, biogeochemical cycles and ecology of the North Atlantic Ocean. The two approaches demonstrate that the observations of a subsurface maximum in the North Atlantic Ocean and the temporal variability at the station BATS of DINxs can be explained simply by preferential remineralization of organic phosphorus relative to nitrogen. A further analysis reveals that the current geochemical estimates based on inorganic forms of phosphorus and nitrogen underestimate integrated nitrogen fixation rates by a factor of two to six, by neglecting the preferential remineralization effect. Most current understanding of oceanic nitrogen fixation is based on the Trichodesmium, though unicellular cyanobacteria, diatom-diazotroph associations (DDA) and heterotrophic bacteria might be as important in adding nitrogen into the ocean. I employ a self-assembling global ocean ecosystem model to simulate diverse phytoplanktonic diazotrophs in the global ocean and examine how temperature, oligotrophy, iron and phosphate limitations influence the global marine diazotroph distribution.
(cont.) Analogs of Trichodesmium, unicellular diazotrophs and DDA are successful in the model, showing very similar distributions with observations. The total diazotrophic population is distributed over most of the oligotrophic warm (sub)tropical waters in the model. The model demonstrates that temperature is not the primary control, but suggests instead that diazotroph biogeography is restricted to the low fixed nitrogen oceanic regions which have sufficient dissolved iron and phosphate. The theory of resource competition is used to map out regions of iron and phosphate regulation of diazotroph distribution. The theory suggests that diazotrophs are largely regulated by iron availability, in particular in the Pacific and Indian Oceans. The iron cycle is currently not well enough constrained to confidently predict the diazotroph distribution in global ocean models.
by Fanny Monteiro.
Ph.D.
Abdel, Magid H. M., P. W. Singleton und J. W. Tavares. „Sesbania-Rhizobium Specificity and Nitrogen Fixation“. University of Arizona (Tucson, AZ), 1988. http://hdl.handle.net/10150/609114.
Der volle Inhalt der QuelleNagel, Eric Dale. „Nitrogen fixation in benthic microalgal mats“. College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/2092.
Der volle Inhalt der QuelleThesis research directed by: Marine, Estuarine, Environmental Sciences Graduate Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Cheng, J. „Interactions between nitrogen fixation and alternative sources of nitrogen in Gloeothece“. Thesis, Swansea University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636244.
Der volle Inhalt der QuelleMansur, Irdika. „Nitrogen uptake dynamics and biological nitrogen fixation in a silvopastoral system“. Thesis, University of Canterbury. Department of Forestry, 1994. http://hdl.handle.net/10092/4243.
Der volle Inhalt der QuelleBücher zum Thema "Nitrogen Fixation"
Ribbe, Markus W., Hrsg. Nitrogen Fixation. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-194-9.
Der volle Inhalt der QuellePolsinelli, M., R. Materassi und M. Vincenzini, Hrsg. Nitrogen Fixation. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3486-6.
Der volle Inhalt der QuelleGresshoff, Peter M., L. Evans Roth, Gary Stacey und William E. Newton, Hrsg. Nitrogen Fixation. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-6432-0.
Der volle Inhalt der QuelleNishibayashi, Yoshiaki, Hrsg. Nitrogen Fixation. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57714-2.
Der volle Inhalt der QuelleZehr, Jonathan P., und Douglas G. Capone. Marine Nitrogen Fixation. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67746-6.
Der volle Inhalt der QuelleGraham, P. H., M. J. Sadowsky und C. P. Vance, Hrsg. Symbiotic Nitrogen Fixation. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1088-4.
Der volle Inhalt der Quellede Bruijn, Frans J., Hrsg. Biological Nitrogen Fixation. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781119053095.
Der volle Inhalt der QuelleGary, Stacey, Evans Harold und Burris Robert H, Hrsg. Biological nitrogen fixation. New York: Chapman and Hall, 1991.
Den vollen Inhalt der Quelle findenS, Stacey G., Burris Robert H. 1914- und Evans H. J, Hrsg. Biological nitrogen fixation. New York: Chapman & Hall, 1992.
Den vollen Inhalt der Quelle findenSmith, Barry E., Raymond L. Richards und William E. Newton, Hrsg. Catalysts for Nitrogen Fixation. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-3611-8.
Der volle Inhalt der QuelleBuchteile zum Thema "Nitrogen Fixation"
Olivares, José. „Nitrogen Fixation“. In Encyclopedia of Astrobiology, 1121–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1064.
Der volle Inhalt der QuelleSprent, J. „Nitrogen fixation“. In The Groundnut Crop, 255–80. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0733-4_8.
Der volle Inhalt der QuelleOlivares, José. „Nitrogen Fixation“. In Encyclopedia of Astrobiology, 1688–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1064.
Der volle Inhalt der QuelleNair, P. K. Ramachandran. „Nitrogen fixation“. In An Introduction to Agroforestry, 307–23. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1608-4_17.
Der volle Inhalt der QuelleBonga, J. M., und P. von Aderkas. „Nitrogen fixation“. In In Vitro Culture of Trees, 150. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8058-8_9.
Der volle Inhalt der QuelleBurris, Robert H. „Nitrogen Fixation“. In Terrestrial Ecosystems and Biodiversity, 321–24. Second edition. | Boca Raton: CRC Press, [2020] | Revised edition of: Encyclopedia of natural resources. [2014].: CRC Press, 2020. http://dx.doi.org/10.1201/9780429445651-41.
Der volle Inhalt der QuelleGooch, Jan W. „Nitrogen Fixation“. In Encyclopedic Dictionary of Polymers, 910. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14325.
Der volle Inhalt der QuelleReitner, Joachim, und Volker Thiel. „Nitrogen Fixation“. In Encyclopedia of Geobiology, 690. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-1-4020-9212-1_247.
Der volle Inhalt der QuelleLack, Andrew, und David Evans. „Nitrogen fixation“. In Plant Biology, 228–30. 2. Aufl. London: Taylor & Francis, 2021. http://dx.doi.org/10.1201/9780203002902-68.
Der volle Inhalt der QuelleOlivares, José, und Juan Sanjuán. „Nitrogen Fixation“. In Encyclopedia of Astrobiology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-27833-4_1064-3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Nitrogen Fixation"
Dekas, Anne E. „NITROGEN FIXATION IN DEEP-SEA SEDIMENTS“. In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-306667.
Der volle Inhalt der QuelleStephens, Ifan. „Electrochemical nitrogen fixation: lithium and beyond“. In MATSUS Spring 2024 Conference. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.matsus.2024.371.
Der volle Inhalt der QuelleTsuji, Masatoshi, Y. Kawakami, A. Ashida und K. Nitta. „Design of Nitrogen Fixation System for CEEF“. In International Conference on Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951583.
Der volle Inhalt der QuelleInoue, M., S. Iiyama, T. Numaguchi, K. Kikuchi und K. Nitta. „Development of the Nitrogen Fixation System for CELSS“. In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/921238.
Der volle Inhalt der QuelleKANG, LIHUA, und HAIBIN MA. „INTERACTION OF ASSOCIATIVE NITROGEN-FIXATION BACTERIA WITH EUCALYPTUS“. In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704504_0025.
Der volle Inhalt der QuelleTsuji, Masatoshi, Takayuki Sakamoto, Akira Ashida und Keiji Nitta. „Nitrogen Fixation System as a CELSS Subsystem for CEEF“. In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/961418.
Der volle Inhalt der QuelleAljobeh, Zuhdi Y., Tiffany N. Kolba, Yacoub Aljobeh und Dana Hinaman. „Impact of Autumn Olive Nitrogen-Fixation on Groundwater Nitrate Concentration“. In World Environmental and Water Resources Congress 2016. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784479865.004.
Der volle Inhalt der QuelleNatwora, Kaela E., und Cody Sheik. „COMPARISON OF NITROGEN FIXATION RATES ACROSS THE LAURENTIAN GREAT LAKES (LGL)“. In 54th Annual GSA North-Central Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020nc-348018.
Der volle Inhalt der QuelleWu, Sarah X., Bishal Thapa, Yuan Yuan, Robinson Ndeddy Aka und Alia Nasir. „Optimization of a green plasma process for nitrogen fixation in water“. In 2022 Houston, Texas July 17-20, 2022. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2022. http://dx.doi.org/10.13031/aim.202200908.
Der volle Inhalt der QuelleTsuji, Masatoshi, Toru Numaguchi, Shigeo Iiyama, Katsutoshi Kikuchi, Keiji Nitta und Akira Ashida. „Experimental Study of Nitrogen Fixation System in a Closed Ecological System“. In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1994. http://dx.doi.org/10.4271/941409.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Nitrogen Fixation"
Paul J. Chirik. Understanding Nitrogen Fixation. Office of Scientific and Technical Information (OSTI), Mai 2012. http://dx.doi.org/10.2172/1041006.
Der volle Inhalt der QuelleBurris, R. H. Enzymology of biological nitrogen fixation. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/5403340.
Der volle Inhalt der QuelleBurris, R. H. Enzymology of biological nitrogen fixation. Annual report. Office of Scientific and Technical Information (OSTI), Mai 1992. http://dx.doi.org/10.2172/10138605.
Der volle Inhalt der QuelleOkon, Yaacov, Robert Burris und Yigal Henis. Biological Nitrogen Fixation in Grass-Azospirillom Association. United States Department of Agriculture, Januar 1985. http://dx.doi.org/10.32747/1985.7593407.bard.
Der volle Inhalt der QuelleJames W Golden. Regulation of Development and Nitrogen Fixation in Anabaena. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/838436.
Der volle Inhalt der QuelleGolden, James W. Regulation of Development and Nitrogen Fixation in Anabaena. Office of Scientific and Technical Information (OSTI), Oktober 2008. http://dx.doi.org/10.2172/939624.
Der volle Inhalt der QuelleJurkevitch, Edouard, Carol Lauzon, Boaz Yuval und Susan MacCombs. role of nitrogen-fixing bacteria in survival and reproductive success of Ceratitis capitata, the Mediterranean fruit fly. United States Department of Agriculture, September 2005. http://dx.doi.org/10.32747/2005.7695863.bard.
Der volle Inhalt der QuelleCramer, Stephen. Support for the 19th International Congress on Nitrogen Fixation. Office of Scientific and Technical Information (OSTI), Januar 2018. http://dx.doi.org/10.2172/1418239.
Der volle Inhalt der QuelleWestgate, Mark E., Gerald Sebuwufu und Mercy K. Kabahuma. Enhancing Yield and Biological Nitrogen Fixation of Common Beans. Ames: Iowa State University, Digital Repository, 2012. http://dx.doi.org/10.31274/farmprogressreports-180814-203.
Der volle Inhalt der QuelleKahn, Michael, Svetlana Yurgel, Aaron Ogden, Mahmoud Gargouri, Jeong-Jin Park, David Gang, Kelly Hagberg et al. Unbalancing Symbiotic Nitrogen Fixation: Can We Make Effectiveness More Effective? Office of Scientific and Technical Information (OSTI), Februar 2021. http://dx.doi.org/10.2172/1764578.
Der volle Inhalt der Quelle