Zeitschriftenartikel zum Thema „Nitrogen cycle“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Nitrogen cycle.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Nitrogen cycle" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Ferguson, Stuart J. „Nitrogen cycle enzymology“. Current Opinion in Chemical Biology 2, Nr. 2 (April 1998): 182–93. http://dx.doi.org/10.1016/s1367-5931(98)80059-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rosca, Victor, Matteo Duca, Matheus T. de Groot und Marc T. M. Koper. „Nitrogen Cycle Electrocatalysis“. Chemical Reviews 109, Nr. 6 (10.06.2009): 2209–44. http://dx.doi.org/10.1021/cr8003696.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Stein, Lisa Y., und Martin G. Klotz. „The nitrogen cycle“. Current Biology 26, Nr. 3 (Februar 2016): R94—R98. http://dx.doi.org/10.1016/j.cub.2015.12.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Fisher, Thomas R. „The Marine Nitrogen Cycle“. Ecology 66, Nr. 1 (Februar 1985): 316–17. http://dx.doi.org/10.2307/1941341.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Crossman, Lisa, und Nicholas Thomson. „Peddling the nitrogen cycle“. Nature Reviews Microbiology 4, Nr. 7 (Juli 2006): 494–95. http://dx.doi.org/10.1038/nrmicro1456.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Doane, Timothy A. „The Abiotic Nitrogen Cycle“. ACS Earth and Space Chemistry 1, Nr. 7 (16.08.2017): 411–21. http://dx.doi.org/10.1021/acsearthspacechem.7b00059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Capone, Douglas G. „The Marine Nitrogen Cycle“. Microbe Magazine 3, Nr. 4 (01.04.2008): 186–92. http://dx.doi.org/10.1128/microbe.3.186.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Jetten, Mike S. M. „The microbial nitrogen cycle“. Environmental Microbiology 10, Nr. 11 (November 2008): 2903–9. http://dx.doi.org/10.1111/j.1462-2920.2008.01786.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cavigelli, Michel A. „Agriculture and the Nitrogen Cycle“. Ecology 86, Nr. 9 (September 2005): 2548–50. http://dx.doi.org/10.1890/0012-9658(2005)86[2548:aatnc]2.0.co;2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Capone, Douglas G., und Angela N. Knapp. „A marine nitrogen cycle fix?“ Nature 445, Nr. 7124 (Januar 2007): 159–60. http://dx.doi.org/10.1038/445159a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Stein, Lisa Y. „Cyanate fuels the nitrogen cycle“. Nature 524, Nr. 7563 (29.07.2015): 43–44. http://dx.doi.org/10.1038/nature14639.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Powlson, D. S. „Understanding the soil nitrogen cycle“. Soil Use and Management 9, Nr. 3 (September 1993): 86–93. http://dx.doi.org/10.1111/j.1475-2743.1993.tb00935.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Clough, T. J. „Agriculture and the Nitrogen Cycle“. Journal of Environmental Quality 34, Nr. 5 (September 2005): 1930. http://dx.doi.org/10.2134/jeq2005.0009br.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

WATANABE, Iwao. „Nitrogen cycle in paddy fields.“ Kagaku To Seibutsu 24, Nr. 3 (1986): 163–70. http://dx.doi.org/10.1271/kagakutoseibutsu1962.24.163.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Blackburn, T. Henry. „Nitrogen cycle in marine sediments“. Ophelia 26, Nr. 1 (31.12.1986): 65–76. http://dx.doi.org/10.1080/00785326.1986.10421979.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Grzebisz, Witold, und Alicja Niewiadomska. „Nitrogen Cycle in Farming Systems“. Agronomy 14, Nr. 1 (29.12.2023): 89. http://dx.doi.org/10.3390/agronomy14010089.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Jones, Karen Gay Cronquist. „Nitrogen fixation as a control in the nitrogen cycle“. Journal of Theoretical Biology 112, Nr. 2 (Januar 1985): 315–32. http://dx.doi.org/10.1016/s0022-5193(85)80290-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Takai, Ken. „The Nitrogen Cycle: A Large, Fast, and Mystifying Cycle“. Microbes and Environments 34, Nr. 3 (2019): 223–25. http://dx.doi.org/10.1264/jsme2.me3403rh.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Landolfi, A., H. Dietze, W. Koeve und A. Oschlies. „Overlooked runaway feedback in the marine nitrogen cycle: the vicious cycle“. Biogeosciences Discussions 9, Nr. 7 (23.07.2012): 8905–30. http://dx.doi.org/10.5194/bgd-9-8905-2012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract. The marine nitrogen (N) inventory is controlled by the interplay of nitrogen loss processes, here referred to as denitrification, and nitrogen source processes, primarily nitrogen fixation. The apparent stability of the marine N inventory on time scales longer than the estimated N residence time, suggests some intimate balance between N sinks and sources. Such a balance may be perceived easier to achieve when N sinks and sources occur in close spatial proximity, and some studies have interpreted observational evidence for such a proximity as indication for a stabilizing feedback processes. Using a biogeochemical ocean circulation model, we here show instead that a close spatial association of N2 fixation and denitrification can, in fact, trigger destabilizing feedbacks on the N inventory and, because of stoichiometric constrains, lead to net N losses. Contrary to current notion, a balanced N inventory requires a regional separation of N sources and sinks. This can be brought about by factors that reduce the growth of diazotrophs, such as iron, or by factors that affect the fate of the fixed nitrogen remineralization, such as dissolved organic matter dynamics. In light of our findings we suggest that spatial arrangements of N sinks and sources have to be accounted for in addition to individual rate estimates for reconstructing past, evaluating present and predicting future marine N inventory imbalances.
20

Monib, Abdul Wahid, Parwiz Niazi, Shah Mahmood Barai, Barbara Sawicka, Abdul Qadeer Baseer, Amin Nikpay, Safa Mahmoud Saleem Fahmawi, Deepti Singh, Mirwais Alikhail und Berthin Thea. „Nitrogen Cycling Dynamics: Investigating Volatilization and its Interplay with N2 Fixation“. Journal for Research in Applied Sciences and Biotechnology 3, Nr. 1 (01.02.2024): 17–31. http://dx.doi.org/10.55544/jrasb.3.1.4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems, the conversion of nitrogen can be carried out through both biological and physical processes. Important processes in the nitrogen cycle include fixation, ammonification, nitrification, and denitrification. The majority of Earth's atmosphere (78%) is atmospheric nitrogen, making it the largest source of nitrogen. However, atmospheric nitrogen has limited availability for biological use, leading to a scarcity of usable nitrogen in many types of ecosystems. The nitrogen cycle is of particular interest to ecologists because nitrogen availability can affect the rate of key ecosystem processes, including primary production and decomposition. Human activities such as fossil fuel combustion, use of artificial nitrogen fertilizers, and release of nitrogen in wastewater have dramatically altered the global nitrogen cycle. Human modification of the global nitrogen cycle can negatively affect the natural environment system and also human health. Volatilization and its Relationship to N2 fascination in Nitrogen Cycle in agriculture field is discuss in this paper.
21

Casciotti, Karen L. „Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle“. Annual Review of Marine Science 8, Nr. 1 (03.01.2016): 379–407. http://dx.doi.org/10.1146/annurev-marine-010213-135052.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Jetten, Mike S. M., Markus Schmid, Ingo Schmidt, Mariska Wubben, Udo van Dongen, Wiebe Abma, Olav Sliekers et al. „Improved nitrogen removal by application of new nitrogen-cycle bacteria“. Reviews in Environmental Science and Bio/Technology 1, Nr. 1 (März 2002): 51–63. http://dx.doi.org/10.1023/a:1015191724542.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Gundersen, Per. „Nitrogen deposition and the forest nitrogen cycle: role of denitrification“. Forest Ecology and Management 44, Nr. 1 (Oktober 1991): 15–28. http://dx.doi.org/10.1016/0378-1127(91)90194-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Tedengren, Michael. „Eutrophication and the disrupted nitrogen cycle“. Ambio 50, Nr. 4 (03.02.2021): 733–38. http://dx.doi.org/10.1007/s13280-020-01466-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Lehnert, Nicolai, Bradley W. Musselman und Lance C. Seefeldt. „Grand challenges in the nitrogen cycle“. Chemical Society Reviews 50, Nr. 6 (2021): 3640–46. http://dx.doi.org/10.1039/d0cs00923g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In this Viewpoint, we address limitations within our current understanding of the complex chemistry of the enzymes in the Nitrogen Cycle. Understanding of these chemical processes plays a key role in limiting anthropogenic effects on our environment.
26

Marrs, R. H., und J. I. Sprent. „The Ecology of the Nitrogen Cycle.“ Journal of Applied Ecology 25, Nr. 3 (Dezember 1988): 1103. http://dx.doi.org/10.2307/2403775.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Grimm, Nancy B. „Autecological Approach to the Nitrogen Cycle“. Ecology 70, Nr. 1 (Februar 1989): 294–95. http://dx.doi.org/10.2307/1938448.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Clough, Tim J., und Leo M. Condron. „Biochar and the Nitrogen Cycle: Introduction“. Journal of Environmental Quality 39, Nr. 4 (Juli 2010): 1218–23. http://dx.doi.org/10.2134/jeq2010.0204.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Raun, William R., Gordon V. Johnson, Jeffory A. Hattey, Shannon L. Taylor und Heather L. Lees. „Nitrogen Cycle Ninja, A Teaching Exercise“. Journal of Natural Resources and Life Sciences Education 26, Nr. 1 (März 1997): 39–42. http://dx.doi.org/10.2134/jnrlse.1997.0039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Zheng, Xunhua, Congbin Fu, Xingkai Xu, Xiaodong Yan, Yao Huang, Shenghui Han, Fei Hu und Guanxiong Chen. „The Asian Nitrogen Cycle Case Study“. AMBIO: A Journal of the Human Environment 31, Nr. 2 (März 2002): 79–87. http://dx.doi.org/10.1579/0044-7447-31.2.79.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Sheudzen, Askhad, und Maksim Perepelin. „NITROGEN AND ITS CYCLE IN NATURE“. RICE GROWING 53, Nr. 4 (2021): 86–92. http://dx.doi.org/10.33775/1684-2464-2021-53-4-86-92.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Singh, Prikhshayat, P. A. Kumar, Y. P. Abrol und M. S. Naik. „Photorespiratory nitrogen cycle - A critical evaluation“. Physiologia Plantarum 66, Nr. 1 (Januar 1986): 169–76. http://dx.doi.org/10.1111/j.1399-3054.1986.tb01252.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Ward, Bess, Douglas Capone und Jonathan Zehr. „What's New in the Nitrogen Cycle?“ Oceanography 20, Nr. 2 (01.06.2007): 101–9. http://dx.doi.org/10.5670/oceanog.2007.53.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Chapin III, F. Stuart. „New cog in the nitrogen cycle“. Nature 377, Nr. 6546 (September 1995): 199–200. http://dx.doi.org/10.1038/377199a0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Smil, Vaclav. „Global Population and the Nitrogen Cycle“. Scientific American 277, Nr. 1 (Juli 1997): 76–81. http://dx.doi.org/10.1038/scientificamerican0797-76.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Kmeť, T. „Model of the nitrogen transformation cycle“. Mathematical and Computer Modelling 44, Nr. 1-2 (Juli 2006): 124–37. http://dx.doi.org/10.1016/j.mcm.2005.11.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Bunt, J. S. „The ecology of the nitrogen cycle“. Aquatic Botany 32, Nr. 4 (Dezember 1988): 401–2. http://dx.doi.org/10.1016/0304-3770(88)90112-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

YAMAYA, Tomoyuki. „Photorespiratory nitrogen cycle in plant leaves.“ Kagaku To Seibutsu 26, Nr. 12 (1988): 813–21. http://dx.doi.org/10.1271/kagakutoseibutsu1962.26.813.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Tian, Zhiyong, Dong Li, Junliang Liu, Jie Zhang, Christal Banks und Gang Chen. „An environmental perspective of nitrogen cycle“. International Journal of Global Environmental Issues 9, Nr. 3 (2009): 199. http://dx.doi.org/10.1504/ijgenvi.2009.026942.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Kinzig, Ann P., und Robert H. Socolow. „Human Impacts on the Nitrogen Cycle“. Physics Today 47, Nr. 11 (November 1994): 24–31. http://dx.doi.org/10.1063/1.881423.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Meijer, A. J., W. H. Lamers und R. A. Chamuleau. „Nitrogen metabolism and ornithine cycle function“. Physiological Reviews 70, Nr. 3 (01.07.1990): 701–48. http://dx.doi.org/10.1152/physrev.1990.70.3.701.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Moomaw, William R., und Melissa B. L. Birch. „Cascading costs: An economic nitrogen cycle“. Science in China Series C Life Sciences 48, S2 (September 2005): 678–96. http://dx.doi.org/10.1007/bf03187109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Zheng, Xiangzhou, Chenyi Zou, Yasa Wang, Shuping Qin, Hong Ding und Yushu Zhang. „Herbicide Applications Reduce Gaseous N Losses: A Field Study of Three Consecutive Wheat–Maize Rotation Cycles in the North China Plain“. Agronomy 14, Nr. 2 (27.01.2024): 283. http://dx.doi.org/10.3390/agronomy14020283.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Herbicide residues in farmland soils have attracted a great deal of attention in recent decades. Their accumulation potentially decreases the activity of microbes and related enzymes, as well as disturbs the nitrogen cycle in farmland soils. In previous studies, the influence of natural factors or nitrogen fertilization on the soil nitrogen cycle have frequently been examined, but the role of herbicides has been ignored. This study was conducted to examine the effects of herbicides on NH3 volatilization- and denitrification-related nitrogen loss through three rotation cycles from 2013 to 2016. The four treatments included no urea fertilizer (CK), urea (CN), urea+acetochlor-fenoxaprop-ethyl (AC-FE), and urea+2,4D-dicamba (2,4D-DI) approaches. The results showed that the application of nitrogen fertilizer significantly increased the nitrogen losses from ammonia volatilization and denitrification in the soil. Ammonia volatilization was the main reason for the gaseous loss of urea nitrogen in a wheat–maize rotation system in the North China Plain (NCP), which was significantly higher than the denitrification loss. In the CK treatment, the cumulative nitrogen losses from ammonia volatilization and denitrification during the three crop rotation cycles were 66.64 kg N hm−2 and 8.07 kg N hm−2, respectively. Compared with CK, the nitrogen losses from ammonia volatilization and denitrification under the CN treatment increased 52.62% and 152.88%, respectively. The application of AC-FE and 2,4D-DI significantly reduced the nitrogen gas losses from the ammonia volatilization and denitrification in the soil. Ammonia volatilization reduction mainly occurred during the maize season, and the inhibition rates of AC-FE and 2,4D-DI were 7.72% and 11.80%, respectively, when compared with CN. From the perspective of the entire wheat–maize rotation cycle, the inhibition rates were 5.41% and 7.23% over three years, respectively. Denitrification reduction also mainly occurred in the maize season, with the inhibition rates of AC-FE and 2,4D-DI being 34.12% and 30.94%, respectively, when compared with CN. From the perspective of the entire wheat–maize rotation cycle, the inhibition rates were 28.39% and 28.58% over three years, respectively. Overall, this study demonstrates that herbicides could impact the nitrogen cycle of farmland soil ecosystems via the suppression of ammonia volatilization and denitrification rates, thus reducing gaseous N losses and mitigating global climate change.
44

Landolfi, A., H. Dietze, W. Koeve und A. Oschlies. „Overlooked runaway feedback in the marine nitrogen cycle: the vicious cycle“. Biogeosciences 10, Nr. 3 (01.03.2013): 1351–63. http://dx.doi.org/10.5194/bg-10-1351-2013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract. The marine nitrogen (N) inventory is thought to be stabilized by negative feedback mechanisms that reduce N inventory excursions relative to the more slowly overturning phosphorus inventory. Using a global biogeochemical ocean circulation model we show that negative feedbacks stabilizing the N inventory cannot persist if a close spatial association of N2 fixation and denitrification occurs. In our idealized model experiments, nitrogen deficient waters, generated by denitrification, stimulate local N2 fixation activity. But, because of stoichiometric constraints, the denitrification of newly fixed nitrogen leads to a net loss of N. This can enhance the N deficit, thereby triggering additional fixation in a vicious cycle, ultimately leading to a runaway N loss. To break this vicious cycle, and allow for stabilizing negative feedbacks to occur, inputs of new N need to be spatially decoupled from denitrification. Our idealized model experiments suggest that factors such as iron limitation or dissolved organic matter cycling can promote such decoupling and allow for negative feedbacks that stabilize the N inventory. Conversely, close spatial co-location of N2 fixation and denitrification could lead to net N loss.
45

Martínez-Espinosa, Rosa María, Jeffrey A. Cole, David J. Richardson und Nicholas J. Watmough. „Enzymology and ecology of the nitrogen cycle“. Biochemical Society Transactions 39, Nr. 1 (19.01.2011): 175–78. http://dx.doi.org/10.1042/bst0390175.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The nitrogen cycle describes the processes through which nitrogen is converted between its various chemical forms. These transformations involve both biological and abiotic redox processes. The principal processes involved in the nitrogen cycle are nitrogen fixation, nitrification, nitrate assimilation, respiratory reduction of nitrate to ammonia, anaerobic ammonia oxidation (anammox) and denitrification. All of these are carried out by micro-organisms, including bacteria, archaea and some specialized fungi. In the present article, we provide a brief introduction to both the biochemical and ecological aspects of these processes and consider how human activity over the last 100 years has changed the historic balance of the global nitrogen cycle.
46

Ibrahim, Ahmed, Rawia El-Motaium, Ayman Shaban und ElSayed Badawy. „Estimation of nitrogen use efficiency by mango seedlings under nano and convention calcium fertilization using the enriched stable isotope (N-15)“. Journal of Experimental Biology and Agricultural Sciences 10, Nr. 2 (30.04.2022): 379–86. http://dx.doi.org/10.18006/2022.10(2).379.386.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This study aimed to investigate the effect of nano-Ca fertilizer on nitrogen uptake, nitrogen use efficiency and determine the best calcium form and dose for mango. A pot experiment was conducted using two year old mango seedlings (cv. Zebda). The pots were filled with sandy soil (8 kg per pot) and one seedling was transplanted into each pot. Four treatments including nano-Ca, convention Ca, soil application and foliar application have been formulated. Calcium was applied as CaO for both the convention and nanoforms. The enriched (15NH4)2SO4 was applied at a rate of (5g per pot). Plants were harvested at the end of the fall, spring, and summer growth cycles and dried at 70 oC. The dried plant is used for making fine powder and to determine total nitrogen, calcium, and %15N atom excess. Results of the study revealed that in all growth cycles, the 15N translocation was higher under foliar nano-Ca treatment than under convention Ca at a 100% rate. The highest uptake, translocation, and nitrogen use efficiency were observed at 50% (250 mg. L-1) foliar nano-Ca treatment in all cycles. In the Fall growth cycle, the values for nitrogen fertilizer use efficiency at 50% nano-Ca rate was 81.8%, while it recorded 64.9% for 25% rate and 51.2% for 100% rate. Calcium concentration, in shoot and roots, was also higher under nano-calcium (for fall cycle = 3.0 for the shoot and 2.8 for root) than the convention calcium (for fall cycle = 2.7% for the shoot and 2.2 for root) for all cycles. The summer growth cycle recorded the highest total biomass under all treatments compared with the fall or spring growth cycles. Allocation of biomass to the shoot was also reported higher under nano-Ca foliar application than that of soil application in all cycles. The best treatment is 50% (250 mg.L-1) foliar nano-Ca as it resulted in the highest N-15 uptake, translocation, and nitrogen use efficiency. Nano calcium proves to be more efficient as fertilizer than conventional calcium.
47

Arnaiz-del-Pozo, Carlos, Ignacio López-Paniagua, Alberto López-Grande und Celina González-Fernández. „Optimum Expanded Fraction for an Industrial, Collins-Based Nitrogen Liquefaction Cycle“. Entropy 22, Nr. 9 (30.08.2020): 959. http://dx.doi.org/10.3390/e22090959.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Industrial nitrogen liquefaction cycles are based on the Collins topology but integrate variations. Several pressure levels with liquefaction to medium pressure and compressor–expander sets are common. The cycle must be designed aiming to minimise specific power consumption rather than to maximise liquid yield. For these reasons, conclusions of general studies cannot be extrapolated directly. This article calculates the optimal share of total compressed flow to be expanded in an industrial Collins-based cycle for nitrogen liquefaction. Simulations in Unisim Design R451 using Peng Robinson EOS for nitrogen resulted in 88% expanded flow, which is greater than the 75–80% for conventional Collins cycles with helium or other substances. Optimum specific compression work resulted 430.7 kWh/ton of liquid nitrogen. For some operating conditions, the relation between liquid yield and specific power consumption was counterintuitive: larger yield entailed larger consumption. Exergy analysis showed 40.3% exergy efficiency of the optimised process. The exergy destruction distribution and exergy flow across the cycle is provided. Approximately 40% of the 59.7% exergy destruction takes place in the cooling after compression. This exergy could be used for secondary applications such as industrial heating, energy storage or for lower temperature applications as heat conditioning.
48

Lanyon, L. E. „Does Nitrogen Cycle?: Changes in the Spatial Dynamics of Nitrogen with Industrial Nitrogen Fixation“. Journal of Production Agriculture 8, Nr. 1 (Januar 1995): 70–78. http://dx.doi.org/10.2134/jpa1995.0070.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Corre, Marife D., Friedrich O. Beese und Rainer Brumme. „SOIL NITROGEN CYCLE IN HIGH NITROGEN DEPOSITION FOREST: CHANGES UNDER NITROGEN SATURATION AND LIMING“. Ecological Applications 13, Nr. 2 (April 2003): 287–98. http://dx.doi.org/10.1890/1051-0761(2003)013[0287:sncihn]2.0.co;2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Krug, E. C., und D. Winstanley. „The need for comprehensive and consistent treatment of the nitrogen cycle in nitrogen cycling and mass balance studies: I. Terrestrial nitrogen cycle“. Science of The Total Environment 293, Nr. 1-3 (Juli 2002): 1–29. http://dx.doi.org/10.1016/s0048-9697(01)01133-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie