Zeitschriftenartikel zum Thema „Ni-Based catalysts“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Ni-Based catalysts" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Liu, Ning, Sha Cui, Zheyu Jin, Zhong Cao, Hui Liu, Shuqing Yang, Xianmin Zheng und Luhui Wang. „Highly Dispersed and Stable Ni/SiO2 Catalysts Prepared by Urea-Assisted Impregnation Method for Reverse Water–Gas Shift Reaction“. Processes 11, Nr. 5 (28.04.2023): 1353. http://dx.doi.org/10.3390/pr11051353.
Der volle Inhalt der QuelleYamanaka, Nobutaka, und Shogo Shimazu. „Selective Hydrogenation Properties of Ni-Based Bimetallic Catalysts“. Eng 3, Nr. 1 (11.01.2022): 60–77. http://dx.doi.org/10.3390/eng3010006.
Der volle Inhalt der QuelleOmoregbe, Osaze, Artur J. Majewski, Robert Steinberger-Wilckens und Ahmad El-kharouf. „Investigating the Effect of Ni Loading on the Performance of Yttria-Stabilised Zirconia Supported Ni Catalyst during CO2 Methanation“. Methane 2, Nr. 1 (08.02.2023): 86–102. http://dx.doi.org/10.3390/methane2010007.
Der volle Inhalt der QuelleKakinuma, Katsuyoshi, Guoyu Shi, Tetsuro Tano, Donald A. Tryk, Miho Yamaguchi, Makoto Uchida, Kazuo Iida, Chisato Arata, Sumitaka Watanabe und Akihiro Iiyama. „Anodic/Cathodic Properties of Ni Based Catalysts for Anion Electrolyte Membrane Water Electrolysis“. ECS Meeting Abstracts MA2023-01, Nr. 36 (28.08.2023): 2090. http://dx.doi.org/10.1149/ma2023-01362090mtgabs.
Der volle Inhalt der QuelleRen, Hua-Ping, Si-Yi Ding, Qiang Ma, Wen-Qi Song, Yu-Zhen Zhao, Jiao Liu, Ye-Ming He und Shao-Peng Tian. „The Effect of Preparation Method of Ni-Supported SiO2 Catalysts for Carbon Dioxide Reforming of Methane“. Catalysts 11, Nr. 10 (10.10.2021): 1221. http://dx.doi.org/10.3390/catal11101221.
Der volle Inhalt der QuelleMatos, Juan, und Maibelin Rosales. „Promoter Effect upon Activated Carbon-Supported Ni-Based Catalysts in Dry Methane Reforming“. Eurasian Chemico-Technological Journal 14, Nr. 1 (15.12.2011): 5. http://dx.doi.org/10.18321/ectj91.
Der volle Inhalt der QuelleKim, Jaerim, Sang-Mun Jung, Yong-Tae Kim und Jong Kyu Kim. „Efficient Alkaline Hydrogen Evolution Reaction Using Superaerophobic Ni Nanoarrays with Accelerated H2 Bubble Release“. ECS Meeting Abstracts MA2023-02, Nr. 42 (22.12.2023): 2150. http://dx.doi.org/10.1149/ma2023-02422150mtgabs.
Der volle Inhalt der QuelleXiao, Yan, Jie Li, Yuan Tan, Xingkun Chen, Fenghua Bai, Wenhao Luo und Yunjie Ding. „Ni-Based Hydrotalcite (HT)-Derived Cu Catalysts for Catalytic Conversion of Bioethanol to Butanol“. International Journal of Molecular Sciences 24, Nr. 19 (03.10.2023): 14859. http://dx.doi.org/10.3390/ijms241914859.
Der volle Inhalt der QuelleDeo, Yashwardhan, Niklas Thissen und Anna K. Mechler. „Electrodeposited Ni-Based Catalysts for the Oxygen Evolution Reaction“. ECS Meeting Abstracts MA2023-02, Nr. 20 (22.12.2023): 1255. http://dx.doi.org/10.1149/ma2023-02201255mtgabs.
Der volle Inhalt der QuelleXiao, Yan, Nannan Zhan, Jie Li, Yuan Tan und Yunjie Ding. „Highly Selective and Stable Cu Catalysts Based on Ni–Al Catalytic Systems for Bioethanol Upgrading to n-Butanol“. Molecules 28, Nr. 15 (27.07.2023): 5683. http://dx.doi.org/10.3390/molecules28155683.
Der volle Inhalt der QuelleKim, Hyunjoung, Young-Hee Lee, Hongjin Lee, Jeong-Cheol Seo und Kyubock Lee. „Effect of Mg Contents on Catalytic Activity and Coke Formation of Mesoporous Ni/Mg-Aluminate Spinel Catalyst for Steam Methane Reforming“. Catalysts 10, Nr. 8 (23.07.2020): 828. http://dx.doi.org/10.3390/catal10080828.
Der volle Inhalt der QuelleYang, Zhenglong, Yan Cui, Pengxiang Ge, Mindong Chen und Leilei Xu. „CO2 Methanation over Rare Earth Doped Ni-Based Mesoporous Ce0.8Zr0.2O2 with Enhanced Low-Temperature Activity“. Catalysts 11, Nr. 4 (01.04.2021): 463. http://dx.doi.org/10.3390/catal11040463.
Der volle Inhalt der QuelleMahy, Julien G., Thierry Delbeuck, Kim Yên Tran, Benoît Heinrichs und Stéphanie D. Lambert. „Green Chemistry for the Transformation of Chlorinated Wastes: Catalytic Hydrodechlorination on Pd-Ni and Pd-Fe Bimetallic Catalysts Supported on SiO2“. Gels 9, Nr. 4 (25.03.2023): 275. http://dx.doi.org/10.3390/gels9040275.
Der volle Inhalt der QuelleKim, Tae-Young, Seongbin Jo, Yeji Lee, Suk-Hwan Kang, Joon-Woo Kim, Soo-Chool Lee und Jae-Chang Kim. „Influence of Ni on Fe and Co-Fe Based Catalysts for High-Calorific Synthetic Natural Gas“. Catalysts 11, Nr. 6 (31.05.2021): 697. http://dx.doi.org/10.3390/catal11060697.
Der volle Inhalt der QuellePark, Ho-Ryong, Beom-Jun Kim, Yeol-Lim Lee, Seon-Yong Ahn, Kyoung-Jin Kim, Ga-Ram Hong, Seong-Jin Yun, Byong-Hun Jeon, Jong Wook Bae und Hyun-Seog Roh. „CO2 Reforming of CH4 Using Coke Oven Gas over Ni/MgO-Al2O3 Catalysts: Effect of the MgO:Al2O3 Ratio“. Catalysts 11, Nr. 12 (30.11.2021): 1468. http://dx.doi.org/10.3390/catal11121468.
Der volle Inhalt der QuelleJiang, Hong Tao, Wei Hua, Hui Quan Li und Yong Chuan Dai. „Recent Progresses on Some Coke Resistant Ni-Based Catalysts for Carbon Dioxide Reforming of Methane“. Advanced Materials Research 650 (Januar 2013): 85–91. http://dx.doi.org/10.4028/www.scientific.net/amr.650.85.
Der volle Inhalt der QuelleRodiansono, Rodiansono, Maria Dewi Astuti, Dwi Rasy Mujiyanti und Uripto Trisno Santoso. „Selective Hydrogenation of Sucrose into Sugar Alcohols over Supported Raney Nickel-Based Catalysts“. Indonesian Journal of Chemistry 19, Nr. 1 (29.01.2019): 183. http://dx.doi.org/10.22146/ijc.31319.
Der volle Inhalt der QuelleZheng, Guo Bin, Hideaki Sano und Yasuo Uchiyama. „Parameters Affecting the Structure and Yield of Carbon Nanotubes in CVD Method“. Materials Science Forum 544-545 (Mai 2007): 773–76. http://dx.doi.org/10.4028/www.scientific.net/msf.544-545.773.
Der volle Inhalt der QuelleIbrahim, Mohamed, Fahad A. Al-Zahrani, Francisco J. Diaz, Tareq Al-Attas, Hasan Zahir, Syed A. Ali, Mohammed Abdul Bari Siddiqui und Mohammad M. Hossain. „Experimental Investigation of Metal-Based Calixarenes as Dispersed Catalyst Precursors for Heavy Oil Hydrocracking“. Catalysts 12, Nr. 10 (17.10.2022): 1255. http://dx.doi.org/10.3390/catal12101255.
Der volle Inhalt der QuelleSaab, Roba, Kyriaki Polychronopoulou, Dalaver H. Anjum, Nikolaos Charisiou, Maria A. Goula, Steven J. Hinder, Mark A. Baker und Andreas Schiffer. „Carbon Nanostructure/Zeolite Y Composites as Supports for Monometallic and Bimetallic Hydrocracking Catalysts“. Nanomaterials 12, Nr. 18 (19.09.2022): 3246. http://dx.doi.org/10.3390/nano12183246.
Der volle Inhalt der QuelleZhang, Fanying, Bin Lu und Peiqin Sun. „Co-Promoted Ni Nanocatalysts Derived from NiCoAl-LDHs for Low Temperature CO2 Methanation“. Catalysts 11, Nr. 1 (15.01.2021): 121. http://dx.doi.org/10.3390/catal11010121.
Der volle Inhalt der QuelleSong, Kyoung Ho, Soon Kwan Jeong, Byung Hun Jeong, Kwan-Young Lee und Hak Joo Kim. „Effect of the Ni/Al Ratio on the Performance of NiAl2O4 Spinel-Based Catalysts for Supercritical Methylcyclohexane Catalytic Cracking“. Catalysts 11, Nr. 3 (02.03.2021): 323. http://dx.doi.org/10.3390/catal11030323.
Der volle Inhalt der QuelleFakeeha, Anis Hamza, Yasir Arafat, Ahmed Aidid Ibrahim, Hamid Shaikh, Hanan Atia, Ahmed Elhag Abasaeed, Udo Armbruster und Ahmed Sadeq Al-Fatesh. „Highly Selective Syngas/H2 Production via Partial Oxidation of CH4 Using (Ni, Co and Ni–Co)/ZrO2–Al2O3 Catalysts: Influence of Calcination Temperature“. Processes 7, Nr. 3 (06.03.2019): 141. http://dx.doi.org/10.3390/pr7030141.
Der volle Inhalt der QuelleYurchenko, Olena, Patrick Diehle, Frank Altmann, Katrin Schmitt und Jürgen Wöllenstein. „Co3O4-Based Materials as Potential Catalysts for Methane Detection in Catalytic Gas Sensors“. Sensors 24, Nr. 8 (18.04.2024): 2599. http://dx.doi.org/10.3390/s24082599.
Der volle Inhalt der QuelleXU, JING, und MARK SAEYS. „COKING MECHANISM AND PROMOTER DESIGN FOR Ni-BASED CATALYSTS: A FIRST PRINCIPLES STUDY“. International Journal of Nanoscience 06, Nr. 02 (April 2007): 131–35. http://dx.doi.org/10.1142/s0219581x07004389.
Der volle Inhalt der QuelleChen, Meng, und Lei Wang. „Performance of Ni-Based Catalysts with La Promoter for the Reforming of Methane in Gasification Process“. Catalysts 14, Nr. 6 (30.05.2024): 355. http://dx.doi.org/10.3390/catal14060355.
Der volle Inhalt der QuelleZhang, Guoqiang, Jinyu Qin, Yuan Zhou, Huayan Zheng und Fanhui Meng. „Catalytic Performance for CO Methanation over Ni/MCM-41 Catalyst in a Slurry-Bed Reactor“. Catalysts 13, Nr. 3 (16.03.2023): 598. http://dx.doi.org/10.3390/catal13030598.
Der volle Inhalt der QuelleHossain, M. Anwar, Bamidele Victor Ayodele, Chin Kui Cheng und Maksudur R. Khan. „Syngas Production from Catalytic CO2 Reforming of CH4 over CaFe2O4 Supported Ni and Co Catalysts: Full Factorial Design Screening“. Bulletin of Chemical Reaction Engineering & Catalysis 13, Nr. 1 (02.04.2018): 57. http://dx.doi.org/10.9767/bcrec.13.1.1197.57-73.
Der volle Inhalt der QuelleWang, Lijian, Kang Zhang, Yi Qiu, Huiyun Chen, Jie Wang und Zhihua Wang. „Catalytic and Sulfur-Tolerant Performance of Bimetallic Ni–Ru Catalysts on HI Decomposition in the Sulfur-Iodine Cycle for Hydrogen Production“. Energies 14, Nr. 24 (17.12.2021): 8539. http://dx.doi.org/10.3390/en14248539.
Der volle Inhalt der QuelleHasnan, Nur Shamimie Nadzwin, Manoj Pudukudy, Zahira Yaakob, Nur Hidayatul Nazirah Kamarudin, Kean Long Lim und Sharifah Najiha Timmiati. „Promoting Effects of Copper and Iron on Ni/MSN Catalysts for Methane Decomposition“. Catalysts 13, Nr. 7 (03.07.2023): 1067. http://dx.doi.org/10.3390/catal13071067.
Der volle Inhalt der QuelleZou, Jin, De Ping Lu und Qi Jie Zhai. „The Research on Ni-Based Ammonia Decomposition Catalyst“. Applied Mechanics and Materials 644-650 (September 2014): 5364–67. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.5364.
Der volle Inhalt der QuelleSong, Da Hye, Un Ho Jung, Young Eun Kim, Hyo Been Im, Tae Ho Lee, Ki Bong Lee und Kee Young Koo. „Influence of Supports on the Catalytic Activity and Coke Resistance of Ni Catalyst in Dry Reforming of Methane“. Catalysts 12, Nr. 2 (14.02.2022): 216. http://dx.doi.org/10.3390/catal12020216.
Der volle Inhalt der QuelleSeufitelli, Gabriel V. S., Jason J. W. Park, Phuong N. Tran, Anthony Dichiara, Fernando L. P. Resende und Rick Gustafson. „The Role of Nickel and Brønsted Sites on Ethylene Oligomerization with Ni-H-Beta Catalysts“. Catalysts 12, Nr. 5 (20.05.2022): 565. http://dx.doi.org/10.3390/catal12050565.
Der volle Inhalt der QuelleFrontera, Patrizia, Anastasia Macario, Angela Malara, Saveria Santangelo, Claudia Triolo, Fortunato Crea und Pierluigi Antonucci. „Trimetallic Ni-Based Catalysts over Gadolinia-Doped Ceria for Green Fuel Production“. Catalysts 8, Nr. 10 (02.10.2018): 435. http://dx.doi.org/10.3390/catal8100435.
Der volle Inhalt der QuelleMeshkini Far, Reza, Olena V. Ischenko, Alla G. Dyachenko, Oleksandr Bieda, Snezhana V. Gaidai und Vladyslav V. Lisnyak. „CO2 hydrogenation into CH4 over Ni–Fe catalysts“. Functional Materials Letters 11, Nr. 03 (Juni 2018): 1850057. http://dx.doi.org/10.1142/s1793604718500571.
Der volle Inhalt der QuelleTsiotsias, Anastasios I., Nikolaos D. Charisiou, Ioannis V. Yentekakis und Maria A. Goula. „Bimetallic Ni-Based Catalysts for CO2 Methanation: A Review“. Nanomaterials 11, Nr. 1 (24.12.2020): 28. http://dx.doi.org/10.3390/nano11010028.
Der volle Inhalt der QuelleDuisembiyev, M. Zh. „Production of tetrahydrofurfuryl alcohol by hydrogenation of furfuryl using an aluminumnickel alloy catalyst“. BULLETIN of the L.N. Gumilyov Eurasian National University. Chemistry. Geography. Ecology Series 138, Nr. 1 (2022): 24–30. http://dx.doi.org/10.32523/2616-6771-2022-138-1-24-30.
Der volle Inhalt der QuelleLiu, Xingmin, Wenjie Xie, Marc Widenmeyer, Hui Ding, Guoxing Chen, Dario M. De Carolis, Kerstin Lakus-Wollny, Leopoldo Molina-Luna, Ralf Riedel und Anke Weidenkaff. „Upcycling Waste Plastics into Multi-Walled Carbon Nanotube Composites via NiCo2O4 Catalytic Pyrolysis“. Catalysts 11, Nr. 11 (11.11.2021): 1353. http://dx.doi.org/10.3390/catal11111353.
Der volle Inhalt der QuelleKhan, Wasim Ullah, Anis Hamza Fakeeha, Ahmed Sadeq Al-Fatish, Muhammad Awais Naeem, Ahmed Ibrahim Aidid und Ahmed Elhag Abasaeed. „Catalytic Decomposition of Methane over La2O3 Supported Mono- and Bimetallic Catalysts“. Applied Mechanics and Materials 625 (September 2014): 275–79. http://dx.doi.org/10.4028/www.scientific.net/amm.625.275.
Der volle Inhalt der QuelleZhang, Chengyang, Renkun Zhang, Hui Liu, Qinhong Wei, Dandan Gong, Liuye Mo, Hengcong Tao, Sha Cui und Luhui Wang. „One-Step Synthesis of Highly Dispersed and Stable Ni Nanoparticles Confined by CeO2 on SiO2 for Dry Reforming of Methane“. Energies 13, Nr. 22 (15.11.2020): 5956. http://dx.doi.org/10.3390/en13225956.
Der volle Inhalt der QuelleLi, Luming, Song Wu, Hongmei Li, Jie Deng und Junshan Li. „Preparation of Novel Mesoporous LaFeO3-SBA-15-CTA Support for Syngas Formation of Dry Reforming“. Nanomaterials 12, Nr. 9 (24.04.2022): 1451. http://dx.doi.org/10.3390/nano12091451.
Der volle Inhalt der QuelleLi, Luming, Song Wu, Hongmei Li, Jie Deng und Junshan Li. „Preparation of Novel Mesoporous LaFeO3-SBA-15-CTA Support for Syngas Formation of Dry Reforming“. Nanomaterials 12, Nr. 9 (24.04.2022): 1451. http://dx.doi.org/10.3390/nano12091451.
Der volle Inhalt der QuelleZhou, Long, Li Ping Ma, Ze Cheng Zi, Jun Ma und Jian Tao Chen. „Study on Ni Catalytic Hydrogenation of Carbon Dioxide for Methane“. Applied Mechanics and Materials 628 (September 2014): 16–19. http://dx.doi.org/10.4028/www.scientific.net/amm.628.16.
Der volle Inhalt der QuelleSuksumrit, Kamonrat, Christoph A. Hauzenberger, Srett Santitharangkun und Susanne Lux. „Reduced Siderite Ore Combined with Magnesium Oxide as Support Material for Ni-Based Catalysts; An Experimental Study on CO2 Methanation“. Catalysts 14, Nr. 3 (20.03.2024): 206. http://dx.doi.org/10.3390/catal14030206.
Der volle Inhalt der QuelleWang, Luhui, Junang Hu, Hui Liu, Qinhong Wei, Dandan Gong, Liuye Mo, Hengcong Tao und Chengyang Zhang. „Three-Dimensional Mesoporous Ni-CeO2 Catalysts with Ni Embedded in the Pore Walls for CO2 Methanation“. Catalysts 10, Nr. 5 (08.05.2020): 523. http://dx.doi.org/10.3390/catal10050523.
Der volle Inhalt der QuelleFeng, Yanyan, Wen Yang und Wei Chu. „A Study of CO2Methanation over Ni-Based Catalysts Supported by CNTs with Various Textural Characteristics“. International Journal of Chemical Engineering 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/795386.
Der volle Inhalt der QuelleZhang, Jianguang, und Ningge Xu. „Hydrogen Production from Ethylene Glycol Aqueous Phase Reforming over Ni–Al Layered Hydrotalcite-Derived Catalysts“. Catalysts 10, Nr. 1 (01.01.2020): 54. http://dx.doi.org/10.3390/catal10010054.
Der volle Inhalt der QuelleZhao, Ming, Liang Zhao, Xiao-Yan Zhao, Jing-Pei Cao und Koh-ichi Maruyama. „Pd-Based Nano-Catalysts Promote Biomass Lignin Conversion into Value-Added Chemicals“. Materials 16, Nr. 14 (24.07.2023): 5198. http://dx.doi.org/10.3390/ma16145198.
Der volle Inhalt der QuelleWei, Minghui, und Xuerong Shi. „Research Progress on Stability Control on Ni-Based Catalysts for Methane Dry Reforming“. Methane 3, Nr. 1 (06.02.2024): 86–102. http://dx.doi.org/10.3390/methane3010006.
Der volle Inhalt der QuelleSanz-Martínez, Andrés, Paul Durán, Víctor D. Mercader, Eva Francés, José Ángel Peña und Javier Herguido. „Biogas Upgrading by CO2 Methanation with Ni-, Ni–Fe-, and Ru-Based Catalysts“. Catalysts 12, Nr. 12 (08.12.2022): 1609. http://dx.doi.org/10.3390/catal12121609.
Der volle Inhalt der Quelle