Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Neutrinoless double-Beta decays“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Neutrinoless double-Beta decays" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Neutrinoless double-Beta decays"
Xing, Z. Z., und Z. H. Zhao. „Neutrinoless double-beta decays: New insights“. Modern Physics Letters A 32, Nr. 14 (02.05.2017): 1730011. http://dx.doi.org/10.1142/s0217732317300117.
Der volle Inhalt der QuelleMaalampi, Jukka, und Jouni Suhonen. „Neutrinoless Doubleβ+/EC Decays“. Advances in High Energy Physics 2013 (2013): 1–18. http://dx.doi.org/10.1155/2013/505874.
Der volle Inhalt der QuelleSuhonen, Jouni. „Neutrinoless double beta decays of 106Cd revisited“. Physics Letters B 701, Nr. 4 (Juli 2011): 490–95. http://dx.doi.org/10.1016/j.physletb.2011.06.016.
Der volle Inhalt der QuelleShirai, Junpei. „Double Beta Decay“. International Journal of Modern Physics: Conference Series 46 (Januar 2018): 1860002. http://dx.doi.org/10.1142/s2010194518600029.
Der volle Inhalt der QuelleCaurier, E., F. Nowacki, A. Poves und J. Retamosa. „Shell model study of the neutrinoless double beta decays“. Nuclear Physics A 654, Nr. 1 (Juli 1999): 973c—976c. http://dx.doi.org/10.1016/s0375-9474(00)88583-8.
Der volle Inhalt der QuelleXing, Zhi-Zhong, und Ye-Ling Zhou. „On the Majorana neutrinos and neutrinoless double beta decays“. Modern Physics Letters A 30, Nr. 25 (30.07.2015): 1530019. http://dx.doi.org/10.1142/s0217732315300190.
Der volle Inhalt der QuelleFALCONE, D. „LEPTON NUMBER AND LEPTON FLAVOR VIOLATIONS IN SEESAW MODELS“. Modern Physics Letters A 17, Nr. 37 (07.12.2002): 2467–75. http://dx.doi.org/10.1142/s0217732302009180.
Der volle Inhalt der QuellePascoli, S., und S. T. Petcov. „Majorana neutrinos, CP violation, neutrinoless double beta and tritium beta decays“. Physics of Atomic Nuclei 66, Nr. 3 (März 2003): 444–51. http://dx.doi.org/10.1134/1.1563702.
Der volle Inhalt der QuelleSalamida, Francesco. „Search for neutrinoless double-beta decays in Ge-76 in the LEGEND experiment“. Journal of Physics: Conference Series 1643, Nr. 1 (01.12.2020): 012026. http://dx.doi.org/10.1088/1742-6596/1643/1/012026.
Der volle Inhalt der QuelleAlduino, C., K. Alfonso, F. T. Avignone, O. Azzolini, G. Bari, F. Bellini, G. Benato et al. „Study of rare nuclear processes with CUORE“. International Journal of Modern Physics A 33, Nr. 09 (30.03.2018): 1843002. http://dx.doi.org/10.1142/s0217751x18430029.
Der volle Inhalt der QuelleDissertationen zum Thema "Neutrinoless double-Beta decays"
Lobasenko, Andrii. „The neutrino nature through the study of the Xenon 136 double-beta decays on the PandaX-III experiment“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP051.
Der volle Inhalt der QuelleThe search for neutrinoless double-beta decay (0νββ) is crucial for advancing our understanding of physics and exploring physics beyond the Standard Model. However, this pursuit is incredibly challenging due to the decay's extreme rarity, requiring profound interpretation and reliance on experimental constraints and theoretical nuclear models. The PandaX-III experiment is dedicated to the search for 0νββ in 136-Xe. It is a high-pressure gaseous Time Projection Chamber (TPC) with Micromegas detectors. This design choice is made to maximize the particle track detection and discrimination 0νββ signal vs. gamma background capabilities. One of the main challenges of the 0νββ search is the discrimination between the signal and background events, which contaminate the region of interest (ROI). The strip readout system of the Micromegas detectors (a combination of 52 of them form a readout plane) allows for the precise 2D reconstruction of the ionization tracks together with the charge and time information. This allows for studying the electron tracks' energy and topology and ultimately discriminating the signal from the background. To suppress the scintillation light and rely only on the ionization signal, a 90% enriched 136-Xe is mixed with a 1% trimethylamine (TMA) quencher. The current energy resolution of the PandaX-III experiment is 3% for the 2457 keV energy of the 136-Xe 0νββ decay, envisioned to be improved to 1%. However, several factors can degrade the energy resolution, such as the presence of dead channels, gain inhomogeneities in the Micromegas detectors, or electron attachment in the TPC. This Ph.D work presents a study on the impact of missing channels on the energy and topology reconstructions in the PandaX-III experiment. The results of the Blob charge determination do not provide the desired possibility of reconstituting the part of the blob energy that would have been lost due to missing channels in XZ from YZ projections of reconstructed event tracks and vice versa. However, the study gave insight into employing machine learning (ML) algorithms to mitigate the impact of missing channels on energy and topology reconstructions. A Convolutional Neural Network (CNN) model was developed to predict the true energy of the electrons from the simulated data collected by the Micromegas with missing channels. The final results show that the CNN model predicts the true energy of the events recorded by the Micromegas with missing channels with a good energy resolution. We observe an improvement in the detection efficiency of the Monte Carlo 0νββ signal in the ROI from 69% to 89% after applying the CNN model, in comparison to the direct approach of directly summing amplitudes of the signals from the Micromegas with missing channels. Another CNN model was also used to classify the two-electron events from the single-electron events in the Monte Carlo data affected by missing channels. The model is capable of rejecting 99% of the background events while maintaining a 26% efficiency for the 0νββ signal in the ROI. The results of this work are promising and pave the way for further studies to improve the energy resolution and background rejection in the PandaX-III experiment
CARRETTONI, MARCO ANDREA. „Data analysis for neutrinoless double beta decay“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/20134.
Der volle Inhalt der QuelleMAGANA, VSEVOLODOVNA RUSLAN IDELFONSO. „Transfer reactions, neutrinoless double beta decay and double charge exchange“. Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/930766.
Der volle Inhalt der QuellePascoli, Silvia. „Elementary Particle Physics Aspects of Neutrinoless Double Beta-Decay“. Doctoral thesis, SISSA, 2002. http://hdl.handle.net/20.500.11767/4261.
Der volle Inhalt der QuelleJones, Philip G. „Background rejection for the neutrinoless double beta decay experiment SNO+“. Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:e99b0c4a-2cce-4e0a-9ce1-e0b8de12b264.
Der volle Inhalt der QuelleSparks, Larua Christine. „Contributing efforts in the search for neutrinoless double beta decay /“. Click here to view, 2009. http://digitalcommons.calpoly.edu/physsp/1/.
Der volle Inhalt der QuelleGehman, Victor M. „Physics reach of the global neutrinoless double-beta decay program and systematic uncertainties of the Majorana project /“. Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/9695.
Der volle Inhalt der QuelleBack, Ashley Robert. „Probing new physics mechanisms in neutrinoless double-beta decay with SNO+“. Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/33945.
Der volle Inhalt der QuelleMonge, Camacho Henry Jose. „Lattice Qcd for Neutrinoless Double Beta Decay: Short Range Operator Contributions“. W&M ScholarWorks, 2018. https://scholarworks.wm.edu/etd/1550153991.
Der volle Inhalt der QuelleWaterfield, James. „Optical calibration system for SNO+ and sensitivity to neutrinoless double-beta decay“. Thesis, University of Sussex, 2017. http://sro.sussex.ac.uk/id/eprint/67570/.
Der volle Inhalt der QuelleBücher zum Thema "Neutrinoless double-Beta decays"
Neutrinoless Double Beta Decay. Narosa Publishing House, 2008.
Den vollen Inhalt der Quelle findenDunger, Jack. Event Classification in Liquid Scintillator Using PMT Hit Patterns: For Neutrinoless Double Beta Decay Searches. Springer, 2019.
Den vollen Inhalt der Quelle findenDunger, Jack. Event Classification in Liquid Scintillator Using PMT Hit Patterns: For Neutrinoless Double Beta Decay Searches. Springer International Publishing AG, 2020.
Den vollen Inhalt der Quelle findenVigdor, Steven E. Trinity. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814825.003.0003.
Der volle Inhalt der QuelleBuchteile zum Thema "Neutrinoless double-Beta decays"
Bilenky, Samoil. „Neutrinoless Double Beta-Decay“. In Introduction to the Physics of Massive and Mixed Neutrinos, 147–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74802-3_9.
Der volle Inhalt der QuelleBilenky, Samoil. „Neutrinoless Double Beta-Decay“. In Introduction to the Physics of Massive and Mixed Neutrinos, 139–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14043-3_8.
Der volle Inhalt der QuelleMaiani, Luciano, und Omar Benhar. „Neutrinoless Double-Beta Decay“. In Relativistic Quantum Mechanics, 272–83. 2. Aufl. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003436263-17.
Der volle Inhalt der QuelleCremonesi, Oliviero. „Status of neutrinoless double beta decay searches“. In EXA/LEAP 2008, 261–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02803-8_39.
Der volle Inhalt der QuelleDunger, Jack. „Neutrinoless Double Beta Decay with Slow Scintillator“. In Springer Theses, 167–207. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31616-7_9.
Der volle Inhalt der QuelleLaymon, Ronald, und Allan Franklin. „The Search for Neutrinoless Double Beta Decay“. In Case Studies in Experimental Physics, 107–20. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12608-6_5.
Der volle Inhalt der QuelleKlapdor-Kleingrothaus, H. V., A. Dietz und I. V. Krivosheina. „Status of Evidence for Neutrinoless Double Beta Decay“. In Dark Matter in Astro- and Particle Physics, 367–403. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-55739-2_36.
Der volle Inhalt der QuelleCassina, L., C. Alduino, K. Alfonso, D. R. Artusa, F. T. Avignone, O. Azzolini, G. Bari et al. „The CUORE Bolometric Detector for Neutrinoless Double Beta Decay Searches“. In Springer Proceedings in Physics, 202–7. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1316-5_38.
Der volle Inhalt der QuelleSoma, Arun Kumar. „nEXO Searches for Neutrinoless Double Beta Decay of $$^{136}$$Xe“. In Springer Proceedings in Physics, 531–34. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2354-8_97.
Der volle Inhalt der QuelleSarma, Lavina, Bichitra Bijay Boruah und Mrinal Kumar Das. „Neutrinoless Double Beta Decay in a Flavor Symmetric Scotogenic Model“. In Springer Proceedings in Physics, 217–22. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5141-0_22.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Neutrinoless double-Beta decays"
Xing, Z. Z., und Z. H. Zhao. „Neutrinoless Double-Beta Decays: New Insights“. In Conference on Cosmology, Gravitational Waves and Particles. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813231801_0023.
Der volle Inhalt der QuelleSuhonen, Jouni. „On the neutrinoless double β+/EC decays“. In WORKSHOP ON CALCULATION OF DOUBLE-BETA-DECAY MATRIX ELEMENTS: (MEDEX '13). AIP Publishing LLC, 2013. http://dx.doi.org/10.1063/1.4856559.
Der volle Inhalt der QuelleZhou, Shun. „NEUTRINO MASS ORDERING AND NEUTRINOLESS DOUBLE-BETA DECAYS“. In Eighteenth Lomonosov Conference on Elementary Particle Physics. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811202339_0013.
Der volle Inhalt der QuelleMyslik, Jordan. „Search for neutrinoless double-beta decays in Ge-76 in the LEGEND experiment“. In The 39th International Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.340.0636.
Der volle Inhalt der QuelleEILAM, Gad. „Neutrinoless double beta decays of the top quark and other effects of heavy Majorana neutrinos.“ In Physics at LHC 2008. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.055.0061.
Der volle Inhalt der QuelleBellini, F. „The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment“. In EXOTIC NUCLEI AND NUCLEAR/PARTICLE ASTROPHYSICS (IV). FROM NUCLEI TO STARS: Carpathian Summer School of Physics 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4768501.
Der volle Inhalt der QuelleSUHONEN, J., und M. T. MUSTONEN. „NEUTRINOLESS DOUBLE EC AND RARE BETA DECAYS AS TOOLS TO SEARCH FOR THE NEUTRINO MASS“. In Proceedings of the Fifth International Conference – Beyond 2010. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814340861_0025.
Der volle Inhalt der QuelleGrebe, Anthony. „Neutrinoless Double-Beta Decay from Lattice QCD“. In Neutrinoless Double-Beta Decay from Lattice QCD. US DOE, 2023. http://dx.doi.org/10.2172/1973461.
Der volle Inhalt der QuelleGrebe, Anthony. „Neutrinoless Double-Beta Decay from Lattice QCD“. In Neutrinoless Double-Beta Decay from Lattice QCD. US DOE, 2023. http://dx.doi.org/10.2172/1988488.
Der volle Inhalt der QuelleChavez, Elise. „DUNE’s Potential to Search for Neutrinoless Double Beta Decay“. In DUNE’s Potential to Search for Neutrinoless Double Beta Decay. US DOE, 2020. http://dx.doi.org/10.2172/1656626.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Neutrinoless double-Beta decays"
Guiseppe, Vincente. Research in Neutrinoless Double-Beta Decay. Office of Scientific and Technical Information (OSTI), Juni 2021. http://dx.doi.org/10.2172/1787959.
Der volle Inhalt der QuelleElliott, Steven. Neutrinoless double beta decay and the neutrino. Office of Scientific and Technical Information (OSTI), Juni 2021. http://dx.doi.org/10.2172/1787275.
Der volle Inhalt der QuelleFuyuto, Kaori. Neutrinoless double beta decay with light sterile neutrinos. Office of Scientific and Technical Information (OSTI), Januar 2023. http://dx.doi.org/10.2172/1908468.
Der volle Inhalt der QuelleWilkerson, John F. MAJORANA Neutrinoless Double-Beta Decay DUSEL R&D. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/963734.
Der volle Inhalt der QuelleMereghetti, Emanuele. An Effective Field Theory Approach to neutrinoless double beta decay. Office of Scientific and Technical Information (OSTI), Oktober 2019. http://dx.doi.org/10.2172/1571585.
Der volle Inhalt der QuelleDolinski, Michelle Jean. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment. Office of Scientific and Technical Information (OSTI), Oktober 2008. http://dx.doi.org/10.2172/945749.
Der volle Inhalt der QuelleGruzko, Julieta, Keith Robert Rielage, Wenqin Xu, Steven Ray Elliott, Ralph Massarczyk, John Jerome III Goett und Pinghan Chu. Status Update of the Majorana Demonstrator Neutrinoless Double Beta Decay Experiment. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1225586.
Der volle Inhalt der QuelleMassarczyk, Ralph. Nuclear structure – from photon strength functions to neutrinoless double beta decay. Office of Scientific and Technical Information (OSTI), Juni 2016. http://dx.doi.org/10.2172/1257110.
Der volle Inhalt der QuelleKrivicich, J. M. New limit on the neutrinoless double beta decay of /sup 100/Mo. Office of Scientific and Technical Information (OSTI), März 1988. http://dx.doi.org/10.2172/7232462.
Der volle Inhalt der QuelleAguayo Navarrete, Estanislao, Richard T. Kouzes, John L. Orrell, Douglas J. Reid und James E. Fast. Optimization of the Transport Shield for Neutrinoless Double Beta-decay Enriched Germanium. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1039848.
Der volle Inhalt der Quelle