Auswahl der wissenschaftlichen Literatur zum Thema „Neurosecretory cell“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Neurosecretory cell" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Neurosecretory cell"

1

Day, T. A., und J. R. Sibbald. „Noxious somatic stimuli excite neurosecretory vasopressin cells via A1 cell group“. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 258, Nr. 6 (01.06.1990): R1516—R1520. http://dx.doi.org/10.1152/ajpregu.1990.258.6.r1516.

Der volle Inhalt der Quelle
Annotation:
Activation of nociceptive somatic afferents excites hypothalamic neurosecretory cells and stimulates the release of vasopressin. To investigate the possibility that relevant afferent information is relayed through the A1 norepinephrine cell group of the caudal ventrolateral medulla, single-unit recording experiments were performed in pentobarbital sodium-anesthetized rats. The effects of somatic nerve stimulation, application of noxious somatic stimuli, and A1 region stimulation on the activity of putative vasopressin-secreting neurosecretory cells of the supraoptic nucleus were compared. The predominant effect of femoral and sciatic nerve stimulation on these cells was excitation, 54% (n tested = 113) displaying a marked increase in discharge probability, which had a mean onset latency of 72 +/- 3 ms and a mean duration of 114 +/- 9 ms. Almost all cells (96%) responding to somatic nerve stimulation were also excited by pinching of the ipsilateral or contralateral hindlimb paw, and the majority (84%) displayed a matching but shorter latency response to A1 region stimulation (mean onset 35 +/- 4 ms, duration 55 +/- 9 ms). A1 region injections of the inhibitory neurotransmitter gamma-aminobutyric acid reversibly blocked the effects of both somatic nerve stimulation (n = 14) and paw pinch (n = 9) on putative vasopressin cells. These results indicate that excitation of vasopressinergic neurosecretory cells by noxious somatic stimuli requires activation of neurons of the caudal ventrolateral medulla and hence are consistent with the proposal of a role for the A1 norepinephrine cell group.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mrdakovic, Marija, Larisa Ilijin, Milena Jankovic-Tomanic, Milena Vlahovic, Zlatko Prolic, Vesna Peric-Mataruga, Jelica Lazarevic und Vera Nenadovic. „Effects of thermal stress on activity of corpora allata and dorsolateral neurosecretory neurons in Morimus funereus larvae“. Archives of Biological Sciences 57, Nr. 2 (2005): 83–92. http://dx.doi.org/10.2298/abs0502083m.

Der volle Inhalt der Quelle
Annotation:
The effects of different temperatures (23?C and 8?C) on activity of corpora allata (CA) and dorsolateral (L1, L2) protocerebral neurosecretory neurons were investigated in Morimus funereus Mulsant (1863) larvae collected from a natural population during March. Activity of CA was revealed by monitoring of CA volume and cell number. Increase of CA volume after two day exposure to both temperatures was shown to be the result of increase in cell number. Activity of CA was higher at 23?C than 8?C. Activity of L1 and L2 neurosecretory neurons was inhibited at both temperatures. Neurosecretory neurons were more sensitive to temperature of 23?C than 8?C. It can be supposed that dorsolateral neurosecretory neurons synthesize neurohormones that affect CA activity, depending on environmental temperature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mahmud, S., PV Mladenov, SC Chakraborty und MAR Faruk. „Relationship Between Gonad Condition and Neurosecretory Cell Activity in the Green-Lipped Mussel, Perna canaliculus“. Progressive Agriculture 18, Nr. 2 (02.03.2014): 135–48. http://dx.doi.org/10.3329/pa.v18i2.18169.

Der volle Inhalt der Quelle
Annotation:
The relationship between the activity of neurosecretory cells and gonad development of Perna canaliculus was investigated. The variation in staining intensity of the neurosecretory cells in different ganglia was evaluated. Changes in staining intensity of neurosecretory cells (NSC) were correlated with gonad development. The variation in colour intensity (CI) resulted from differences in the amount of secretory materials within the NSCs. The neurosecretory cell types A and B showed a similar pattern of staining intensity, and showed correlation with gametogenesis and spawning. At the beginning of gonad development, these cells possessed very few granules and the number of granules in the cells increased with gonad maturation. The staining intensity decreased in A and B- cells just after spawning. Cell types C and D did not show any substantial changes in colour intensity with gonad changes.DOI: http://dx.doi.org/10.3329/pa.v18i2.18169 Progress. Agric. 18(2): 135 - 148, 2007
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Raghavan, Sudha Devi Arath, Aswani Ayanath und Bhadravathi Kenchappa Chandrasekhar Sagar. „Fine structure of neurosecretory cells and sinus gland in the eyestalk of the freshwater crab Travancoriana schirnerae Bott, 1969 (Decapoda: Gecarcinucidae)“. Brazilian Journal of Biological Sciences 6, Nr. 14 (2019): 535–55. http://dx.doi.org/10.21472/bjbs.061406.

Der volle Inhalt der Quelle
Annotation:
This study elucidated the fine structure of neurosecretory cells and sinus gland in the optic ganglia of the freshwater crab Travancoriana schirnerae Bott, 1969 (Decapoda: Gecarcinucidae). The eyestalk ganglion showed the presence of four well defined ganglia arranged below the ommatidium: lamina ganglionaris, medulla externa, medulla interna and medulla terminalis of which the lamina ganglionaris, was devoid of neurosecretory cells. Groups of neurosecretory cells seen distributed along the medulla externa, interna and terminalis regions constitute the X-organs. Electron microscopic observations of the eyestalk ganglia revealed ten types of neurosecretory cells, mostly apolar with a few unipolar and bipolar cells classified according to the size, shape and density of the cell and nucleus, cell organelles/inclusions, together with the arrangement and properties of chromatin. These cells were characterized by the presence of large nuclei with unusually condensed chromatin, inclusions like vacuoles and vesicles of varying size, shape and density and organelles like Golgi, endoplasmic reticulum, ribosomes and mitochondria and neurosecretory material. The sinus gland of T. schirnerae was positioned laterally between the externa and interna regions, composed of axonal endings of the neurosecretory cells of the optic ganglia with interspersed glial cells. The axon terminals were enclosed with several small to large membrane bound homogenously dense neurosecretory granules which also occur in the preterminal areas of the axons. Based on size, shape and density of granules and axoplasmic matrix, seven terminal types could be distinguished in the sinus gland of T. schirnerae. Mostly, the granules contained in a terminal were of the same type; rarely, the same terminal enclosed granules of varying size, shape and density. The neurosecretory cell types and axon terminal types represent the types of neurohormones they contained. A precise knowledge of the morphology and cytology of neurosecretory cells in the XO-SG complex of the eyestalk that secrete neurohormones controlling major physiological processes such as growth and reproduction is imperative for successful captive breeding of a species of aquaculture potential.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Meyer, C., M. J. Freund-Mercier, Y. Guerné und Ph Richard. „Relationship between oxytocin release and amplitude of oxytocin cell neurosecretory bursts during suckling in the rat“. Journal of Endocrinology 114, Nr. 2 (August 1987): 263–70. http://dx.doi.org/10.1677/joe.0.1140263.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT Plasma concentrations of oxytocin and vasopressin were measured in relationship to oxytocin cell firing during suckling in urethane-anaesthetized rats. Preliminary experiments showed that plasma concentrations of oxytocin and vasopressin, which were increased immediately after anaesthesia, reverted to basal concentrations 3 h later. Moreover, it was found that exogenous oxytocin had entirely disappeared 5 min after i.v. bolus injections of known doses of oxytocin. Suckling did not modify the basal plasma concentration of oxytocin (14·6 ± 2·9 compared with 14·±61·5 pmol/l before suckling) except during a brief period immediately after neurosecretory bursts on oxytocin cells (37·8 ± 5·2 pmol/l; P < 0·001, n = 11). The plasma concentration of oxytocin did not differ significantly from the basal concentration 1·5 min later. The plasma concentration of vasopressin never varied. After two neurosecretory bursts of similar amplitude (total number of spikes during the burst) recorded on the same oxytocin cell, the variations in plasma concentration of oxytocin were also similar. When, for a given cell, the amplitude of neurosecretory bursts increased or decreased, the amount of oxytocin released changed in the same way. These data demonstrate (1) that suckling induces pulsatile release of oxytocin without vasopressin, and (2) a direct relationship between the amounts of oxytocin released and the amplitude of oxytocin cell neurosecretory bursts which argue in favour of simultaneous increases or decreases in the neurosecretory burst amplitudes on all oxytocin cells. J. Endocr. (1987) 114, 263–270
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Brown, Colin H., John A. Russell und Gareth Leng. „Opioid modulation of magnocellular neurosecretory cell activity“. Neuroscience Research 36, Nr. 2 (Februar 2000): 97–120. http://dx.doi.org/10.1016/s0168-0102(99)00121-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rossler, W., und U. Bickmeyer. „LOCUST MEDIAL NEUROSECRETORY CELLS IN VITRO: MORPHOLOGY, ELECTROPHYSIOLOGICAL PROPERTIES AND EFFECTS OF TEMPERATURE“. Journal of Experimental Biology 183, Nr. 1 (01.10.1993): 323–39. http://dx.doi.org/10.1242/jeb.183.1.323.

Der volle Inhalt der Quelle
Annotation:
The medial neurosecretory cells of the pars intercerebralis in the protocerebrum of larval and adult locusts (Locusta migratoria) were cultured in a chemically defined serum-free culture medium. The morphology of the cells was investigated by light microscopy and the electrophysiological properties were studied using the patch-clamp technique in the whole-cell configuration. The dissociated neurosecretory cells grew new processes under these conditions and were maintained in culture for up to 2 months. The percentage of cells showing outgrowth was significantly higher in third-instar larvae than in instars 4 and 5 and adults. A primary axonal stump promoted a unipolar cell morphology; in other cases, most neurosecretory cells became multipolar. The presence of glial cells in undissociated groups of neurosecretory cells improved outgrowth and the formation of neurite bundles. A considerable number of the recorded cells showed spiking activity in response to depolarization. The influences of temperature on spike frequency, duration and amplitude as well as on membrane potential and ionic currents were investigated. The results suggest that temperature may directly affect the function of neurosecretory cells.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fairweather, I., und D. W. Halton. „Neuropeptides in platyhelminths“. Parasitology 102, S1 (Januar 1991): S77—S92. http://dx.doi.org/10.1017/s0031182000073315.

Der volle Inhalt der Quelle
Annotation:
The neuropeptide story began in 1928 with the description by Ernst Scharrer of gland-like nerve cells in the hypothalamus of the minnow, Phoxinus laevis. Because these nerve cells were overwhelmingly specialized for secretory activity, overshadowing other neuronal properties, Scharrer termed them ‘neurosecretory neurons’. What was even more remarkable about the cells was that their products were released into the bloodstream to act as hormones, specifically neurohormones. Neurosecretory cells were identified largely on morphological grounds. That is, they could be stained with special techniques, such as chrome-haematoxylin and paraldehyde-fuchsin, although the techniques are far from specific, staining non-neurosecretory cells as well. However, the basis for the ‘special’ neurosecretory techniques is the demonstration of sulphur-containing proteins – so they are indicative of peptide-producing neurones. An alternative characteristic of neurosecretory cells is the presence of large (> 100 nm), dense-cored vesicles at the electron microscope level; these are the so-called elementary granules of neurosecretion, or ENGs. However, implicit in the concept of neurosecretion is that the prime function of the neurosecretory cell is in endocrine regulation, exerting a hormone-like control over some aspect of the organism's metabolism, by controlling endocrine glands and other effector organs. To satisfy this criterion, evidence had to be obtained of cycles of secretory activity within the cell that could be correlated with a change in the physiological condition of the organism.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Göhde, Ronja, Benjamin Naumann, Davis Laundon, Cordelia Imig, Kent McDonald, Benjamin H. Cooper, Frédérique Varoqueaux, Dirk Fasshauer und Pawel Burkhardt. „Choanoflagellates and the ancestry of neurosecretory vesicles“. Philosophical Transactions of the Royal Society B: Biological Sciences 376, Nr. 1821 (08.02.2021): 20190759. http://dx.doi.org/10.1098/rstb.2019.0759.

Der volle Inhalt der Quelle
Annotation:
Neurosecretory vesicles are highly specialized trafficking organelles that store neurotransmitters that are released at presynaptic nerve endings and are, therefore, important for animal cell–cell signalling. Despite considerable anatomical and functional diversity of neurons in animals, the protein composition of neurosecretory vesicles in bilaterians appears to be similar. This similarity points towards a common evolutionary origin. Moreover, many putative homologues of key neurosecretory vesicle proteins predate the origin of the first neurons, and some even the origin of the first animals. However, little is known about the molecular toolkit of these vesicles in non-bilaterian animals and their closest unicellular relatives, making inferences about the evolutionary origin of neurosecretory vesicles extremely difficult. By comparing 28 proteins of the core neurosecretory vesicle proteome in 13 different species, we demonstrate that most of the proteins are present in unicellular organisms. Surprisingly, we find that the vesicular membrane-associated soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein synaptobrevin is localized to the vesicle-rich apical and basal pole in the choanoflagellate Salpingoeca rosetta. Our 3D vesicle reconstructions reveal that the choanoflagellates S. rosetta and Monosiga brevicollis exhibit a polarized and diverse vesicular landscape reminiscent of the polarized organization of chemical synapses that secrete the content of neurosecretory vesicles into the synaptic cleft. This study sheds light on the ancestral molecular machinery of neurosecretory vesicles and provides a framework to understand the origin and evolution of secretory cells, synapses and neurons. This article is part of the theme issue ‘Basal cognition: multicellularity, neurons and the cognitive lens’.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Garcia, U., und H. Arechiga. „Regulatory Influences on Crustacean Neurosecretory Cells“. Physiology 12, Nr. 1 (01.02.1997): 16–21. http://dx.doi.org/10.1152/physiologyonline.1997.12.1.16.

Der volle Inhalt der Quelle
Annotation:
During the last decade, new evidence has been produced on the subtle mechanisms by which invertebrate neurosecretory cell activity is regulated. Multiple synaptic and humoral mechanisms regulate the endogenous activity of secretory neurons. Specific cellular interactions and ionic mechanisms have been disclosed, and new insights are now available on the integrative features of invertebrate neurosecretory systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Neurosecretory cell"

1

Buffa, Laura. „Cell Biology of the ICA69 protein family in Neurosecretory cells“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1174057636463-96361.

Der volle Inhalt der Quelle
Annotation:
In type 1 diabetes (T1D), an autoimmune disease, autoantibodies are preferentially directed against proteins associated with Golgi and post-Golgi secretory vesicles, including insulin secretory granules and synaptic-like microvesicles. Thus, the study of beta-cell autoantigens with yet unknown function may provide novel insight into the secretory machinery of beta-cells and led to the discovery of novel pathways. Islet cell autoantigen of 69 kDa (ICA69) is a T1D autoantigen. It is a cytosolic protein of still unknown function. An impairment in neurotransmitter release upon mutation of its homologue in C. elegans suggests, however, an involvement of ICA69 in neurosecretion. Interestingly, ICA69 contains a BAR domain, present in several proteins involved in intracellular transport. The BAR domain functions as a dimerization motif, provides a general binding interface for different types of GTPases, and is a membrane binding/bending module. Its presence in ICA69 is a further hint supporting the putative involvement of ICA69 in intracellular membrane trafficking. The first part of this thesis was concerned with the characterization of ICA69, and the elucidation of its role in membrane traffic in pancreatic beta-cells. ICA69 was shown to be enriched in the perinuclear region, where also markers of the Golgi region are found. ICA69 was shown to interact with several membrane lipids, preferentially with PI(4)P, enriched on the Golgi complex. During the course of this thesis a combination of biochemical and imaging techniques were applied to investigate the interaction between ICA69 and Rab2, a small GTPase associated with the intermediate compartment and involved in the trafficking between the ER and the Golgi complex. ICA69 was shown to co-immunoprecipitate with Rab2 from INS-1 cells extracts. GST-pull down assays demonstrated that this interaction is GTP-dependent. Furthermore, confocal microscopy indicated that ICA69 and Rab2 extensively colocalize in particulate structures throughout the cytoplasm. Immunocytochemistry and subcellular fractionation experiments suggested that Rab2 recruits ICA69 to membranes. Functional studies indicated that ICA69 over-expression in INS-1 cells has effects that resemble, and in some cases amplify those observed upon Rab2 over-expression. Specifically, it impairs the trafficking between ER and Golgi, measured through the appearance and the conversion of the pro-form of ICA512 in the mature form of the protein. Moreover, it correlates with a redistribution of the beta-COP subunit of the coatomer, participating in the early secretory pathway, between membrane-bound compartments and the cytosol and it reduces stimulated insulin secretion. The data reported in this thesis conclusively point to ICA69 as a novel Rab2 effector, and may therefore contribute to the elucidation the yet poorly understood mechanism of action of Rab2 in the secretory pathway. The second part of the thesis was devoted to the study of an ICA69 paralogue gene, called ICA69-RP. Similarly to ICA69, ICA69-RP mRNA was shown to be primarily present in tissues such as brain and pancreatic islets, showing the expression pattern of a gene preferentially expressed in neuroendocrine cells. Unlike ICA69, however, and similar to other genes associated with the secretory machinery of beta-cells, ICA69-RP appeared to be glucose regulated, as shown by a 1.55 fold increase in mRNA levels upon stimulation of the cells with 25 mM glucose for two hours.Glucose stimulation of beta-cells prompts the activation of post-transcripional mechanisms which quickly up-regulate the expression of secretory granule genes and consequently renew granule stores. The increased expression of ICA69-RP upon glucose stimulation of cells may be part of this process. Unfortunately, all attempts to elucidate the intracellular localization of endogenous ICA69-RP failed, and it was not possible to obtain significant insights about its localization by over-expressing a fusion protein between ICA69-RP and GFP. Unlike other paralogues containing the BAR domain, such as amphiphysin 1 and 2 or Rvs167p and Rvs161p, ICA69 and ICA69-RP were shown not to form heterodimers. Furthermore, ICA69-RP did not show any interaction with Rab2 or Rab1, involved in the anterograde transport between ER and Golgi. Thus, its physiological role remains to be investigated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tessmar-Raible, Kristin. „The evolution of sensory and neurosecretory cell types in bilaterian brains“. [S.l. : s.n.], 2004. http://archiv.ub.uni-marburg.de/diss/z2004/0501/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Tribut, Florence. „Effets de l'axotomie sur les propriétés électrophysiologiques et pharmacologiques des récepteurs cholinergiques des cellules neurosécrétrices : les dorsal unpaired median (DUM) neurones du dernier ganglion abdominal de la blatte periplaneta americana L“. Angers, 1994. http://www.theses.fr/1994ANGE0011.

Der volle Inhalt der Quelle
Annotation:
Une étude des effets d'une axotomie sur certaines propriétés électrophysiologiques et pharmacologiques d'un type particulier de cellules neurosécrétrices adultes, les dorsal unpaired median (DUM) neurones du dernier ganglion abdominal de la blatte p. Americana a été réalisée. Une étude comparative de l'activité électrique des DUM neurones in situ et isoles à l'aide des techniques de microélectrode intracellulaire et de patch-clamp (configuration cellule entière), a montré que l'augmentation significative de l'amplitude des potentiels d'action, observée des 48h après axotomie, était due à l'augmentation de l'amplitude du courant entrant sodique responsable de la phase de dépolarisation. L'utilisation d'inhibiteurs de la synthèse protéique a permis de démontrer qu'une néosynthèse de canaux sodiques était impliquée dans cette augmentation. Une étude similaire a été réalisée sur les propriétés pharmacologiques des récepteurs cholinergiques de ces cellules. Deux types distincts de récepteurs cholinergiques (un récepteur nicotinique résistant à l'alphabungarotoxine et un récepteur muscarinique de sous type m1 like) ont été caractérisés pharmacologiquement sur les DUM neurones in situ. L'axotomie produit une rapide diminution de la sensibilité de ces deux types de récepteurs vis-à-vis de cet agoniste. De plus, un troisième récepteur a été caractérisé et identifié comme étant un récepteur mixte (nicotinique/muscarinique). Tous les effecteurs contrôlés par ces différents types de récepteurs ont été mis en évidence.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Fournier, Sue. „Calmodulin binding proteins in chromaffin and other neurosecretory cells“. Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75881.

Der volle Inhalt der Quelle
Annotation:
The Ca$ sp{2+}$ binding protein, calmodulin, has been implicated in several Ca$ sp{2+}$ dependent processes during secretion in many different secretory systems. One area where calmodulin is suggested to play a role is the fusion of the secretory granule with the plasma membrane during exocytosis. Calmodulin may mediate the interaction or fusion through specific calmodulin-binding proteins (CMBPs) present in these two membranes.
CMBPs present in bovine chromaffin cell granule membranes were characterized using the techniques of calmodulin affinity chromatography and $ sp{125}$I calmodulin overlay. Several CMBPs were detected in these membranes. One of these proteins, of molecular mass 65 kilodaltons (65-CMBP), was found to be immunologically identical to a protein previously identified in rat brain synaptic vesicles termed "p65".
Recent studies have debated the subcellular localization of 65-CMBP (p65) as well as another synaptic vesicle protein, synaptophysin (p38). A controversial question surrounding these proteins is whether or not they are present in large dense core secretory granules of neurons and endocrine cells, or exclusively localized on small synaptic or synaptic-like vesicles present in these tissues. Subcellular fractionation studies of adrenal medulla showed that both 65-CMBP and p38 were present in fractions corresponding to granule membranes and intact granules. However, an additional membrane fraction equilibrating near the upper portion of the sucrose gradient, also showed strong immunoreactivity with an antibody to p38.
CMBPs were also isolated from bovine posterior pituitary neurosecretory granules and rat brain synaptic vesicles. These membranes were also found to contain the 65-CMBP (63 kDa in rat brain synaptic vesicles).
Chromaffin cell membranes were isolated using positively charged microcarriers. The 65-CMBP (p65) was also identified in this structure. In addition, immunoblots of plasma and granule membranes showed that the 65-CMBP was a component of both membranes, whereas p38 was only present in granule membranes. Thus, there appears to be a different subcellular localization between the 65-CMBP and p38 in chromaffin cells.
These findings on the 65-CMBP are discussed in relation to its possible role as a mediator of the fusion step of the exocytotic process.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Grolleau, Françoise. „Origine et régulation de l'activité électrique de type pacemaker de cellules neurosécrétrices, les dorsal unpaired median (DUM) neurones, d'un insecte (la blatte, periplaneta americana)“. Angers, 1996. http://www.theses.fr/1996ANGE0028.

Der volle Inhalt der Quelle
Annotation:
Les dorsal unpaired median (DUM) neurones constituent une faible population de cellules neurosécrétrices capables de générer spontanément des potentiels d'action. Parce-que peu d'information était disponible sur les mécanismes ioniques à l'origine de cette activité électrique spontanée, ce travail de recherche a été entrepris dans le but de caractériser du point de vue électrophysiologique et pharmacologique les courants ioniques susceptibles d'être impliques dans cette activité électrique des DUM neurones du dernier ganglion abdominal de la blatte periplaneta americana. A l'aide de la technique du patch clamp (configuration cellule entière), il a été possible de mettre en évidence sept types de courants ioniques et de préciser, pour la majorité d'entre eux, leur rôle spécifique. Quatre courants potassiques ont été identifiés: un courant potassique dépendant du sodium, un courant potassique biphasique dépendant du calcium, un courant potassique a rectification sortante retardée et un courant potassique transitoire de type A. Ils sont impliqués dans la repolarisation, la post-hyperpolarisation et dans le maintien d'une fréquence basse de décharge des potentiels d'action. Trois courants calciques ont été également caractérisés. Un courant calcique a haut seuil d'activation dont la fonction reste encore à préciser et deux différents types de courants calciques a bas seuil d'activation. L'un est transitoire et présente des propriétés identiques au courant calcique de type T. Il est responsable de la phase initiale de la prédépolarisation. L'autre est maintenu et présente une inactivation dépendante de la concentration en calcium intracellulaire (ca#2#+i). Il est impliqué dans la dernière partie de la phase de prédépolarisation, proche du seuil de déclenchement du potentiel d'action. L'utilisation des techniques de cytofluorescence et du patch clamp a permis de montrer qu'un agoniste cholinergique, la nicotine, est capable, par l'intermédiaire d'un récepteur cholinergique mixte (nicotinique-muscarinique), de diminuer la fréquence de décharge des potentiels d'action. L'activation de ce récepteur provoque une augmentation de la ca#2#+i qui affecte la fonction de ce courant calcique maintenu essentiel pour atteindre le seuil de déclenchement du potentiel d'action.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Myers, C. M. „FMRFamide-like peptides in neurosecretary cells of the locust nervous system“. Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372928.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Buffa, Laura [Verfasser]. „Cell biology of the ICA69 protein family in neurosecretory cells / Laura Buffa“. 2006. http://d-nb.info/985845465/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Teßmar-Raible, Kristin [Verfasser]. „The evolution of sensory and neurosecretory cell types in bilaterian brains / vorgelegt von Kristin Teßmar-Raible“. 2004. http://d-nb.info/973023775/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Graf, Robert Alan. „Calcium regulation in neurosecretory cells undergoing regeneration in culture“. Thesis, 1993. http://hdl.handle.net/10125/10330.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wey, Chiou Woei, und 魏秋偉. „Postembryonic development of brain neurosecretory cells in he cockroach,Diploptera punctata“. Thesis, 1995. http://ndltd.ncl.edu.tw/handle/96533608711864890601.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Neurosecretory cell"

1

S, Freier, Hrsg. The Neuroendocrine-immune network. Boca Raton, Fla: CRC Press, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Armstrong, William E., und Jeffrey G. Tasker. Neurophysiology of Neuroendocrine Neurons. Wiley & Sons, Incorporated, John, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Armstrong, William E., und Jeffrey G. Tasker. Neurophysiology of Neuroendocrine Neurons. Wiley & Sons, Incorporated, John, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Armstrong, William E., und Jeffrey G. Tasker. Neurophysiology of Neuroendocrine Neurons. Wiley, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Neurosecretory cell"

1

Capinera, John L., Marjorie A. Hoy, Paul W. Paré, Mohamed A. Farag, John T. Trumble, Murray B. Isman, Byron J. Adams et al. „Neurosecretory Cell“. In Encyclopedia of Entomology, 2606. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_2207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Schlosser, Gerhard. „Evolution of Neurosecretory Cell Types“. In Evolutionary Origin of Sensory and Neurosecretory Cell Types, 159–92. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003160625-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Schlosser, Gerhard. „Evolution of Photosensory Cell Types“. In Evolutionary Origin of Sensory and Neurosecretory Cell Types, 119–57. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003160625-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Schlosser, Gerhard. „Differentiation of Cell Types from Non-Neurogenic Placodes“. In Development of Sensory and Neurosecretory Cell Types, 165–78. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315162317-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Schlosser, Gerhard. „Origin of Cranial Placodes from a Common Primordium“. In Development of Sensory and Neurosecretory Cell Types, 43–70. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315162317-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Schlosser, Gerhard. „The Vertebrates' New Head“. In Development of Sensory and Neurosecretory Cell Types, 1–29. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315162317-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Schlosser, Gerhard. „General Mechanisms of Sensory and Neuronal Differentiation“. In Development of Sensory and Neurosecretory Cell Types, 93–111. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315162317-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Schlosser, Gerhard. „The Cranial Placodes of Vertebrates – An Overview“. In Development of Sensory and Neurosecretory Cell Types, 31–41. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315162317-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Schlosser, Gerhard. „Differentiation of Photoreceptors“. In Development of Sensory and Neurosecretory Cell Types, 153–63. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315162317-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Schlosser, Gerhard. „Differentiation of Sensory and Neuronal Cell Types from Neurogenic Placodes“. In Development of Sensory and Neurosecretory Cell Types, 113–52. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315162317-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Neurosecretory cell"

1

Jacobson, Gail. Localization of neurosecretory cells within the cerebral ganglia of Amphiphorus imparispinosus Griffin, 1898 (Hoplonemertea) and their possible regulatory role in the annual reproductive cycle. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.2514.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie