Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Neuronal progenitors“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Neuronal progenitors" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Neuronal progenitors"
Shih, Hung-Yu, Chia-Wei Chang, Yi-Chieh Chen und Yi-Chuan Cheng. „Identification of the Time Period during Which BMP Signaling Regulates Proliferation of Neural Progenitor Cells in Zebrafish“. International Journal of Molecular Sciences 24, Nr. 2 (15.01.2023): 1733. http://dx.doi.org/10.3390/ijms24021733.
Der volle Inhalt der QuelleWang, D. D., D. D. Krueger und A. Bordey. „Biophysical Properties and Ionic Signature of Neuronal Progenitors of the Postnatal Subventricular Zone In Situ“. Journal of Neurophysiology 90, Nr. 4 (Oktober 2003): 2291–302. http://dx.doi.org/10.1152/jn.01116.2002.
Der volle Inhalt der QuelleTurrero García, Miguel, José-Manuel Baizabal, Diana N. Tran, Rui Peixoto, Wengang Wang, Yajun Xie, Manal A. Adam et al. „Transcriptional regulation of MGE progenitor proliferation by PRDM16 controls cortical GABAergic interneuron production“. Development 147, Nr. 22 (15.10.2020): dev187526. http://dx.doi.org/10.1242/dev.187526.
Der volle Inhalt der QuelleRuan, Xiangbin, Bowei Kang, Cai Qi, Wenhe Lin, Jingshu Wang und Xiaochang Zhang. „Progenitor cell diversity in the developing mouse neocortex“. Proceedings of the National Academy of Sciences 118, Nr. 10 (01.03.2021): e2018866118. http://dx.doi.org/10.1073/pnas.2018866118.
Der volle Inhalt der QuelleFindlay, Quan, Kiryu K. Yap, Annette J. Bergner, Heather M. Young und Lincon A. Stamp. „Enteric neural progenitors are more efficient than brain-derived progenitors at generating neurons in the colon“. American Journal of Physiology-Gastrointestinal and Liver Physiology 307, Nr. 7 (01.10.2014): G741—G748. http://dx.doi.org/10.1152/ajpgi.00225.2014.
Der volle Inhalt der QuelleNagler, Arnon, Hadar Arien-Zakay, Shimon Lecht, Hanan Galski und Philip Lazarovici. „Nerve Growth Factor-Responsive Neuronal Progenitors From Human Umbilical Cord Blood.“ Blood 114, Nr. 22 (20.11.2009): 4601. http://dx.doi.org/10.1182/blood.v114.22.4601.4601.
Der volle Inhalt der QuelleAntel, Jack P., Josephine Nalbantoglu und André Olivier. „Neuronal progenitors—learning from the hippocampus“. Nature Medicine 6, Nr. 3 (März 2000): 249–50. http://dx.doi.org/10.1038/73076.
Der volle Inhalt der QuelleDubreuil, V., M. Hirsch, A. Pattyn, J. Brunet und C. Goridis. „The Phox2b transcription factor coordinately regulates neuronal cell cycle exit and identity“. Development 127, Nr. 23 (01.12.2000): 5191–201. http://dx.doi.org/10.1242/dev.127.23.5191.
Der volle Inhalt der QuelleMikhailov, Andrey, und Yoshiyuki Sankai. „Apoptosis in Postmortal Tissues of Goat Spinal Cords and Survival of Resident Neural Progenitors“. International Journal of Molecular Sciences 25, Nr. 9 (25.04.2024): 4683. http://dx.doi.org/10.3390/ijms25094683.
Der volle Inhalt der QuelleMcConnell, SK, und CE Kaznowski. „Cell cycle dependence of laminar determination in developing neocortex“. Science 254, Nr. 5029 (11.10.1991): 282–85. http://dx.doi.org/10.1126/science.254.5029.282.
Der volle Inhalt der QuelleDissertationen zum Thema "Neuronal progenitors"
Hayashi, Junya. „Primate embryonic stem cell-derived neuronal progenitors transplanted into ischemic brain“. Kyoto University, 2006. http://hdl.handle.net/2433/135623.
Der volle Inhalt der QuelleChapman, Heather M. „Gsx genes control the neuronal to glial fate switch in telencephalic progenitors“. University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1394725163.
Der volle Inhalt der QuelleLarrosa, Madeleine Julie [Verfasser]. „The function of the zinc finger transcription factor Insm1 in neuronal progenitors / Madeleine Larrosa“. Berlin : Freie Universität Berlin, 2020. http://d-nb.info/1219508306/34.
Der volle Inhalt der QuelleLarrosa, Madeleine [Verfasser]. „The function of the zinc finger transcription factor Insm1 in neuronal progenitors / Madeleine Larrosa“. Berlin : Freie Universität Berlin, 2020. http://d-nb.info/1219508306/34.
Der volle Inhalt der QuelleHyroššová, Petra. „Not to be picky: PEPCK-M ensures metabolic flexibility in cancer cells and neuronal progenitors“. Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/672607.
Der volle Inhalt der QuelleEl fosfoenolpiruvato carboxiquinasa mitocondrial (PEPCK-M; PCK2) se regula transcripcionalmente por limitación de aminoácidos y por ER-estrés, de una manera dependiente de ATF4, aumentando así la supervivencia de la célula. La presencia selectiva de esta isoenzima en todos los tipos de cáncer examinado y en células neuroprogenitoras, sugiere una relación funcional con las adaptaciones metabólicas de estas células. Esta tesis ha tenido como objetivos fundamentales la caracterización del rol de la PEPCK-M en célula tumoral y en célula neuroprogenitora En cultivos neuronales, los neuroprogenitores Tbr2 positivos requieren lactato como sustrato metabólico para el mantenimiento de su fenotipo y su metabolismo. La PEPCK-M se expresa a niveles altos en este tipo celular y su actividad es necesaria para mantener la viabilidad de estos progenitores y cumplir con los requerimientos anabólicos a partir de carbonos provenientes del lactato. La actividad PEPCK-M en célula tumoral es necesaria para la supervivencia y crecimiento. A pesar de su potencial relevancia para las adaptaciones metabólicas en cáncer, no se conocen los mecanismos responsables de su actividad pro-supervivencia. Por ello, nos hemos propuesto estudiar estos mecanismos mediante análisis de metabolómica con los que hemos querido examinar si la PEPCK-M alimenta una vía alternativa a la glucosa utilizando carbonos provenientes de glutamina en un modelo experimental con niveles de actividad PEPCK-M reducidos y sobreexpresados. La contribución de carbonos marcados con 13C a partir de [U- 13C] glutamina en los productos de ramificación de glicolisis como serina y glicina, esta correlacionando directamente con los niveles de actividad PEPCK-M en condiciones de estrés nutricional (baja glucosa). La cataplerosis de glutamina no se ve afectada por alteraciones en la actividad de PEPCK-M. Sin embargo, un mayor enriquecimiento de 13C en intermediarios del ciclo de Krebs sugieren una reducción del flujo a través de esta vía. En conjunto, estos datos aumentan nuestra comprensión de las adaptaciones metabólicas en los tumores y el papel de la PEPCK en la provisión de flujos de carbono alternativas para lidiar con el estrés nutricional. Finalmente, estos estudios nos permiten proponer a la PEPCK-M como una nueva diana para el tratamiento de procesos tumorogénicos que necesitará ser validada en el futuro.
WACLAW, RONALD RAYMOND. „MOLECULAR CONTROL OF NEURONAL DIVERSITY IN LATERAL GANGLIONIC EMINENCE PROGENITORS OF THE EMBRYONIC MOUSE TELENCEPHALON“. University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1130334258.
Der volle Inhalt der QuelleBelmonte, Mateos Carla 1992. „Unveiling the molecular and behavioral properties of hindbrain rhombomere centers“. Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2022. http://hdl.handle.net/10803/673433.
Der volle Inhalt der QuelleLa regulació precisa de la neurogènesi s’aconsegueix localitzant la competència neurogènica de manera diferencial al llarg del territori. Al cervell posterior, l’expressió de gens proneurals es restringeix a les zones adjacents a les cèl·lules de les fronteres, i per tant és absent als centres així doncs assenyalant els centres dels rombòmers com una població no neurogènica. En aquest treball, hem revelat el seu perfil molecular espai-temporal així com un dels mecanismes que manté aquestes cèl·lules com a no neurogèniques. Mitjançant imatges 4D hem aportat llum per primera vegada a l’enteniment del seu comportament cel·lular en viu, i proposem que aquesta població dels centres dels rombòmers és de fet heterogènia ja que conté cèl·lules amb diferent capacitat proliferativa.
Tayel, Sara [Verfasser], Marius [Gutachter] Ader und Frank [Gutachter] Buchholz. „Identifiying Casc15 as a novel regulator of progenitors’ proliferation and neuronal migration in the developing neocortex / Sara Tayel ; Gutachter: Marius Ader, Frank Buchholz“. Dresden : Technische Universität Dresden, 2021. http://d-nb.info/123184616X/34.
Der volle Inhalt der QuelleMcLaughlin, Heather Ward. „Modeling sporadic Alzheimer's disease using induced pluripotent stem cells“. Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13094355.
Der volle Inhalt der QuelleVoltes, Cobo Adrià 1991. „Hindbrain boundaries : addressing the crossroad between tissue segmentation and cell fate regulation“. Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/665625.
Der volle Inhalt der QuelleLa població cel·lular de les fronteres del romboencèfal (PCF) s’especifica a la interfície entre compartiments adjacents durant el desenvolupament embrionari del cervell posterior. La PCF del romboencèfal és una població no neurogènica que actua com a centre senyalitzador i com a barrera elàstica que evita la barreja de cèl·lules entre compartiments adjacents. Cal destacar que les cèl·lules de les fronteres presenten característiques mecàniques que fan palès l’impacte de la segmentació del teixit sobre l’arquitectura de les fronteres: presenten una morfologia cel·lular específica i contenen estructures d’actomiosina de tipus cable que proporcionen a les fronteres la tensió necessària per portar a terme la funció de barrera física. Considerant el microambient mecànic a la PCF i les seves especificitats en termes d’identitat, proposem l’activitat YAP/TAZ-TEAD com la bastida molecular present a la intersecció entre la segmentació del romboencèfal i la modulació de la capacitat proliferativa. En aquesta investigació demostrem que els estímuls mecànics presents a la PCF desencadenen l’activitat YAP/TAZ-TEAD. Al seu torn, aquesta activitat és transitòriament responsable de la modulació de la capacitat proliferativa de les cèl·lules de les fronteres, les quals acabaran diferenciant-se en neurones.
Bücher zum Thema "Neuronal progenitors"
Naglieri, Benedetta. Complex Regulation of Pax6 Neuronal Progenitors By Rb Family Members During Corticogenesis. [New York, N.Y.?]: [publisher not identified], 2012.
Den vollen Inhalt der Quelle findenThe neuroendocrine Leydig cells and their stem cell progenitors, the pericytes. Dordrecht: Springer, 2009.
Den vollen Inhalt der Quelle findenArturo, Álvarez-Buylla, und García-Verdugo José Manuel, Hrsg. Identification and characterization of neural progenitor cells in the adult mammalian brain. Berlin: Springer, 2009.
Den vollen Inhalt der Quelle findenRolfs, A. Isolation and Induction of Neuronal Progenitor Cells: Rostock Spring School 2006 Contributions, Special Issue, Neurodegenerative Diseases 2007. S Karger Pub, 2007.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Neuronal progenitors"
Zholudeva, Lyandysha V., Ying Jin, Liang Qiang, Michael A. Lane und Itzhak Fischer. „Preparation of and Progenitors: Neuronal Production and Applications“. In Neuronal Cell Culture, 73–108. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1437-2_7.
Der volle Inhalt der QuelleBonner, Joseph F., Christopher J. Haas und Itzhak Fischer. „Preparation of Neural Stem Cells and Progenitors: Neuronal Production and Grafting Applications“. In Neuronal Cell Culture, 65–88. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-640-5_7.
Der volle Inhalt der QuelleRex, Tonia S. „Virus-mediated Gene Delivery to Neuronal Progenitors“. In Advances in Experimental Medicine and Biology, 147–53. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-74904-4_16.
Der volle Inhalt der QuelleThomaidou, Dimitra, Panagiotis K. Politis und Rebecca Matsas. „Neurogenesis in the Central Nervous System: Cell Cycle Progression/Exit and Differentiation of Neuronal Progenitors“. In Cell Cycle Regulation and Differentiation in Cardiovascular and Neural Systems, 141–75. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-60327-153-0_8.
Der volle Inhalt der QuelleAlt, Frederick W., Pei-Chi Wei und Bjoern Schwer. „Recurrently Breaking Genes in Neural Progenitors: Potential Roles of DNA Breaks in Neuronal Function, Degeneration and Cancer“. In Research and Perspectives in Neurosciences, 63–72. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60192-2_6.
Der volle Inhalt der QuelleHorie, Nobutaka. „Neural Stem Cells/Neuronal Progenitor Cells“. In Cell Therapy Against Cerebral Stroke, 27–37. Tokyo: Springer Japan, 2017. http://dx.doi.org/10.1007/978-4-431-56059-3_3.
Der volle Inhalt der QuelleDarbinyan, Armine, Rafal Kaminski, Martyn K. White, Nune Darbinian und Kamel Khalili. „Isolation and Propagation of Primary Human and Rodent Embryonic Neural Progenitor Cells and Cortical Neurons“. In Neuronal Cell Culture, 45–54. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-640-5_5.
Der volle Inhalt der QuelleLuskin, M. B., T. Zigova, R. Betarbet und B. J. Soteres. „Characterization of Neuronal Progenitor Cells of the Neonatal Forebrain“. In Isolation, Characterization and Utilization of CNS Stem Cells, 67–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-80308-6_5.
Der volle Inhalt der QuelleOcasio, Jennifer Karin. „Maintaining Cerebellar Granule Neuron Progenitors in Cell Culture“. In Methods in Molecular Biology, 9–12. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2752-5_2.
Der volle Inhalt der QuelleFalls, Douglas L., und Marla B. Luskin. „Neuronal Progenitor Cells of the Mammalian Neonatal Anterior Subventricular Zone“. In Neural Development and Stem Cells, 123–42. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1385/1-59259-914-1:123.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Neuronal progenitors"
Hwang, Inah, Dongqing Cao, Do-Yeon Kim, Tuo Zhang, Jian Hu, Yu Yao und Jihye Paik. „Abstract 2481: Loss of FUBP1 impairs terminal neuronal differentiation and predisposes neural progenitors for transformation“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2481.
Der volle Inhalt der QuelleLepski, Guilherme, Chary Batista, Eric Mariano, Camila Dale, Alexandre Cristante, José Otoch und Manoel Teixeira. „Pain Inhibition Through Transplantation of Fetal Neuronal Progenitors into the Injured Spinal Cord in Rats“. In XXXII Congresso Brasileiro de Neurocirurgia. Thieme Revinter Publicações Ltda, 2018. http://dx.doi.org/10.1055/s-0038-1672636.
Der volle Inhalt der QuelleAbasi, Sara, John R. Aggas und Anthony Guiseppi-Elie. „Permissive Electroconductive Nanocomposites for Neuronal Progenitor Cells“. In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2019. http://dx.doi.org/10.1109/ner.2019.8716893.
Der volle Inhalt der QuelleSafronova, N. A., T. S. Kurkin, M. B. Shevtsov, A. A. Sadova, Yu A. Zagryadskaya, I. S. Okhrimenko, V. I. Borshchevskiy und A. V. Mishin. „SAMPLE PREPARATION OF A RECEPTOR ASSOCIATED WITH MULTIPLE SCLEROSIS PATHOGENESIS FOR STRUCTURAL STUDIES USING CRYOELECTRON MICROSCOPY“. In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-370.
Der volle Inhalt der QuelleHollingsworth, Ethan, Dominic Julian, Fumihiro Watanabe, Trevor Reutershan, Katie Julian, Ivette Martorell Serra, Sofia Lizarraga, Mark Hester und Jaime Imitola. „Interferome perturbation of human brain organoids induces progenitor and neuronal dysfunction seen in multiple sclerosis and autism (P2-3.015)“. In 2023 Annual Meeting Abstracts. Lippincott Williams & Wilkins, 2023. http://dx.doi.org/10.1212/wnl.0000000000204077.
Der volle Inhalt der QuelleWortham, Matthew, Genglin Jin, Julia Lailai Sun, Darell D. Bigner und Hai Yan. „Abstract 3352: The medulloblastoma oncogene Otx2 enhances migration and permits ectopic proliferation of neuronal progenitor cells of the cerebellum and brainstem“. In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3352.
Der volle Inhalt der QuelleSantos, Júlia Romano Ferreira, Érika Laís de Oliveira Silva, Iris Dutra Barbosa, Lorrane Silva Moura Dorneles und Fernanda Guimarães Vieira. „REVISÃO DE LITERATURA: ASPECTOS MORFOLÓGICOS NEURONAIS CONGÊNITOS DESENCADEADOS PELA INFECÇÃO INTRA-UTERINA POR ZIKA VÍRUS“. In I Congresso On-line Nacional de Histologia e Embriologia Humana. Revista Multidisciplinar em Saúde, 2022. http://dx.doi.org/10.51161/rems/3216.
Der volle Inhalt der QuelleVan Dyke, William S., Ozan Akkus und Eric Nauman. „Murine Osteochondral Stem Cells Express Collagen Type I More Strongly on PDMS Substrates Than on Tissue Culture Plastic“. In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14272.
Der volle Inhalt der QuelleMaire, Cecile L., Shakti H. Ramkissoon und Keith L. Ligon. „Abstract 3304: Conditional Pten loss in Olig2 expressing neural stem/progenitor cells results in massive myelination and disruption of the neuronal differentiation in the absence of neoplasia“. In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3304.
Der volle Inhalt der QuelleZhang, Z., A. Lei, L. Xu, L. Chen, Y. Chen, X. Zhang, Y. Gao und Y. Cao. „PO-277 Postmitotic neuron-like differentiation of cancer cells suggests that cancer cells have the properties of neural precursor/progenitor cells“. In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.308.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Neuronal progenitors"
Carvey, Paul M. Cytokine Induction of Dopamine Neurons from Progenitor Cells. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2000. http://dx.doi.org/10.21236/ada391417.
Der volle Inhalt der Quelle