Zeitschriftenartikel zum Thema „Neuromuscular transmission“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Neuromuscular transmission.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Neuromuscular transmission" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

MacLean, Ian C. „Neuromuscular Transmission“. Physical Medicine and Rehabilitation Clinics of North America 1, Nr. 1 (November 1990): 43–52. http://dx.doi.org/10.1016/s1047-9651(18)30745-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Parker, C. „Neuromuscular transmission“. Postgraduate Medical Journal 74, Nr. 870 (01.04.1998): 255. http://dx.doi.org/10.1136/pgmj.74.870.255-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Torda, T. A. „Monitoring Neuromuscular Transmission“. Anaesthesia and Intensive Care 30, Nr. 2 (April 2002): 123–33. http://dx.doi.org/10.1177/0310057x0203000202.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Persistent neuromuscular blockade is not uncommon in the recovery room and contributes to postoperative morbidity and possibly mortality. The use of neuromuscular monitoring and intermediate rather than long-acting neuromuscular blocking drugs have been shown to reduce its incidence. Clinically available methods of detecting and quantitating neuromuscular blockade are reviewed. The writer concludes that such monitoring should be routine when neuromuscular blocking drugs are used.
4

Beemer, G. H., und P. H. Goonetilleke. „Monitoring neuromuscular transmission“. Current Anaesthesia & Critical Care 7, Nr. 2 (April 1996): 101–6. http://dx.doi.org/10.1016/s0953-7112(96)80065-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pascuzzi, Robert. „Disorders of Neuromuscular Transmission“. Seminars in Neurology 24, Nr. 02 (15.07.2004): 137. http://dx.doi.org/10.1055/s-2004-830898.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Weissman, J. D. „Electromyography: Neuromuscular Transmission Studies“. Neurology 39, Nr. 8 (01.08.1989): 1141. http://dx.doi.org/10.1212/wnl.39.8.1141-b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Meistelman, Claude. „Monitoring of neuromuscular transmission“. Current Opinion in Anaesthesiology 6, Nr. 4 (August 1993): 720–25. http://dx.doi.org/10.1097/00001503-199308000-00024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wareham, Anthony C. „Neuromuscular function and transmission“. Anaesthesia & Intensive Care Medicine 6, Nr. 6 (Juni 2005): 203–5. http://dx.doi.org/10.1383/anes.6.6.203.65787.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Krendel, David. „Hypermagnesemia and Neuromuscular Transmission“. Seminars in Neurology 10, Nr. 01 (März 1990): 42–45. http://dx.doi.org/10.1055/s-2008-1041252.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

WINDSOR, J. P. W., P. S. SEBEL und P. J. FLYNN. „The neuromuscular transmission monitor“. Anaesthesia 40, Nr. 2 (22.02.2007): 146–51. http://dx.doi.org/10.1111/j.1365-2044.1985.tb10705.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Henning, R. H. „Purinoceptors in neuromuscular transmission“. Pharmacology & Therapeutics 74, Nr. 1 (Januar 1997): 115–28. http://dx.doi.org/10.1016/s0163-7258(97)00015-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Fletcher, Allan. „Neuromuscular function and transmission“. Anaesthesia & Intensive Care Medicine 9, Nr. 6 (Juni 2008): 256–58. http://dx.doi.org/10.1016/j.mpaic.2008.04.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Fletcher, Allan. „Neuromuscular function and transmission“. Anaesthesia & Intensive Care Medicine 12, Nr. 6 (Juni 2011): 245–48. http://dx.doi.org/10.1016/j.mpaic.2011.03.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

MAELICKE, ALFRED, T. COBAN, A. SCHRATTENHOLZ, B. SCHRÖDER, S. REINHARDT-MAELICKE, A. STORCH, J. GODOVAC-ZIMMERMANN, CHRISTOPH METHFESSEL, E. F. R. PEREIRA und EDSON X. ALBUQUERQUE. „Physostigmine and Neuromuscular Transmission“. Annals of the New York Academy of Sciences 681, Nr. 1 Myasthenia Gr (Juni 1993): 140–54. http://dx.doi.org/10.1111/j.1749-6632.1993.tb22880.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Martin, A. Robert. „Principles of Neuromuscular Transmission“. Hospital Practice 27, Nr. 8 (15.08.1992): 147–58. http://dx.doi.org/10.1080/21548331.1992.11705473.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Torda, T. A. „Book Review: Neuromuscular Transmission.“ Anaesthesia and Intensive Care 29, Nr. 4 (August 2001): 439. http://dx.doi.org/10.1177/0310057x0102900420.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Hirst, G. D. S., S. De Gleria und D. F. van Helden. „Neuromuscular transmission in arterioles“. Experientia 41, Nr. 7 (Juli 1985): 874–79. http://dx.doi.org/10.1007/bf01970004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Sherman, Howard B. „Electromyography: Neuromuscular transmission studies“. Surgical Neurology 31, Nr. 2 (Februar 1989): 163. http://dx.doi.org/10.1016/0090-3019(89)90336-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Schelhaas, H. Jurgen, Bart P. C. Van De Warrenburg, Hubertus P. H. Kremer und Machiel J. Zwarts. „Neuromuscular transmission in SCA6“. Annals of Neurology 55, Nr. 3 (2004): 451–52. http://dx.doi.org/10.1002/ana.20015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Pascuzzi, Robert. „Introduction to the Neuromuscular Junction and Neuromuscular Transmission“. Seminars in Neurology 10, Nr. 01 (März 1990): 1–5. http://dx.doi.org/10.1055/s-2008-1041246.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

UEDA, NAOYUKI. „Clinical Assessment of Neuromuscular Transmission.“ JOURNAL OF JAPAN SOCIETY FOR CLINICAL ANESTHESIA 15, Nr. 3 (1995): 197–201. http://dx.doi.org/10.2199/jjsca.15.197.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Vincent, Angela. „Autoantibodies in neuromuscular transmission disorders“. Annals of Indian Academy of Neurology 11, Nr. 3 (2008): 140. http://dx.doi.org/10.4103/0972-2327.42932.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Fagerlund, M. J., und L. I. Eriksson. „Current concepts in neuromuscular transmission“. British Journal of Anaesthesia 103, Nr. 1 (Juli 2009): 108–14. http://dx.doi.org/10.1093/bja/aep150.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Marshall, Ian G. „Prejunctional aspects of neuromuscular transmission“. Current Opinion in Anaesthesiology 4, Nr. 4 (August 1991): 577–82. http://dx.doi.org/10.1097/00001503-199108000-00021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Martyn, J. A. J., M. Jonsson Fagerlund und L. I. Eriksson. „Basic principles of neuromuscular transmission“. Anaesthesia 64 (März 2009): 1–9. http://dx.doi.org/10.1111/j.1365-2044.2008.05865.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Engel, Andrew. „Congenital Disorders of Neuromuscular Transmission“. Seminars in Neurology 10, Nr. 01 (März 1990): 12–26. http://dx.doi.org/10.1055/s-2008-1041248.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Lange, D. J. „Electrophysiologic testing of neuromuscular transmission“. Neurology 48, Supplement 5 (01.04.1997): 18S—22S. http://dx.doi.org/10.1212/wnl.48.suppl_5.18s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Sieb, J. P. „Fluoroquinolone antibiotics block neuromuscular transmission“. Neurology 50, Nr. 3 (01.03.1998): 804–7. http://dx.doi.org/10.1212/wnl.50.3.804.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

JONES, R. M. „Neuromuscular transmission and its blockade.“ Anaesthesia 40, Nr. 10 (Oktober 1985): 964–76. http://dx.doi.org/10.1111/j.1365-2044.1985.tb10551.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Schulze, J., M. Toepfer, K.-C. Schroff, S. Aschhoff, J. Remien, W. Müller-Felber und S. Endres. „Clindamycin and nicotinic neuromuscular transmission“. Lancet 354, Nr. 9192 (November 1999): 1792–93. http://dx.doi.org/10.1016/s0140-6736(99)02881-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Enomoto, Koh-Ichi, und Charles Edwards. „Thiamine blockade of neuromuscular transmission“. Brain Research 358, Nr. 1-2 (Dezember 1985): 316–23. http://dx.doi.org/10.1016/0006-8993(85)90976-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Kaminski, Henry J., und Robert L. Ruff. „Congenital Disorders of Neuromuscular Transmission“. Hospital Practice 27, Nr. 9 (15.09.1992): 73–85. http://dx.doi.org/10.1080/21548331.1992.11705484.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Mahadeva, Branavan, Lawrence Phillips und Vern Juel. „Autoimmune Disorders of Neuromuscular Transmission“. Seminars in Neurology 28, Nr. 2 (April 2008): 212–27. http://dx.doi.org/10.1055/s-2008-1062260.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Saldien, V., und K. M. Vermeyen. „Neuromuscular transmission monitoring in children“. Pediatric Anesthesia 14, Nr. 4 (April 2004): 289–92. http://dx.doi.org/10.1046/j.1460-9592.2003.01152.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Sieb, Jo¨rn P., und Andrew G. Engel. „Ephedrine: effects on neuromuscular transmission“. Brain Research 623, Nr. 1 (September 1993): 167–71. http://dx.doi.org/10.1016/0006-8993(93)90025-i.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Sanders, D. B. „WS6-1 Neuromuscular transmission — overview“. Clinical Neurophysiology 121 (Oktober 2010): S79. http://dx.doi.org/10.1016/s1388-2457(10)60335-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Kurenkov, D. A., S. Yu Chizhevskaya und E. M. Nikolaenko. „Objective monitoring of neuromuscular transmission in laparoscopic surgery“. Kazan medical journal 94, Nr. 6 (15.12.2013): 866–69. http://dx.doi.org/10.17816/kmj1808.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Aim. To assess the importance of quantitative neuromuscular transmission monitoring in laparoscopic surgery. Methods. 30 patients [11 (37.7%) males, 19 (63.3%) females, mean age 52.3±7.18 years] who underwent laparoscopic surgery and general anesthesia associated with skeletal muscles relaxation, were examined. The degree of neuromuscular transmission recovery and time to trachea extubation performed by an anesthetist after the end of surgery (like laparoscopic cholecystectomy, appendectomy) and general anesthesia associated with skeletal muscles relaxation were assessed using quantitative monitoring of neuromuscular transmission and «blind» control. Results. In 21 patients no drugs were used to reverse the skeletal muscles relaxation. Trachea extubation in this group was performed 10.5 minutes after the end of surgery in average at the neuromuscular transmission Train of Four (TOF) level of 43-81% for 15 patients and at the TOF level over 90% in 6 patients. In 9 patients, sugammadex (2 mg/kg) was used for neuromuscular transmission reversal, the average level of neuromuscular blockade (TOF) in those patients was 41±6.5%. TOF average recovery time up to 90% was 1 minute 48 seconds. Trachea extubation was performed no later than 4 minutes after the sugammadex administration. Conclusion. The subjective assessment of neuromuscular transmission recovery, based on the assessment of clinical signs, is not able to completely exclude the residual muscle relaxation. Objective monitoring of neuromuscular transmission is required to determine the time of intubation, administration of maintenance doses of muscle relaxants, and for assessment of efficacy of reversal and possibility for trachea extubation.
38

Fogarty, Matthew J., Maria A. Gonzalez Porras, Carlos B. Mantilla und Gary C. Sieck. „Diaphragm neuromuscular transmission failure in aged rats“. Journal of Neurophysiology 122, Nr. 1 (01.07.2019): 93–104. http://dx.doi.org/10.1152/jn.00061.2019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In aging Fischer 344 rats, phrenic motor neuron loss, neuromuscular junction abnormalities, and diaphragm muscle (DIAm) sarcopenia are present by 24 mo of age, with larger fast-twitch fatigue-intermediate (type FInt) and fast-twitch fatigable (type FF) motor units particularly vulnerable. We hypothesize that in old rats, DIAm neuromuscular transmission deficits are specific to type FInt and/or FF units. In phrenic nerve/DIAm preparations from rats at 6 and 24 mo of age, the phrenic nerve was supramaximally stimulated at 10, 40, or 75 Hz. Every 15 s, the DIAm was directly stimulated, and the difference in forces evoked by nerve and muscle stimulation was used to estimate neuromuscular transmission failure. Neuromuscular transmission failure in the DIAm was observed at each stimulation frequency. In the initial stimulus trains, the forces evoked by phrenic nerve stimulation at 40 and 75 Hz were significantly less than those evoked by direct muscle stimulation, and this difference was markedly greater in 24-mo-old rats. During repetitive nerve stimulation, neuromuscular transmission failure at 40 and 75 Hz worsened to a greater extent in 24-mo-old rats compared with younger animals. Because type IIx and/or IIb DIAm fibers (type FInt and/or FF motor units) display greater susceptibility to neuromuscular transmission failure at higher frequencies of stimulation, these data suggest that the age-related loss of larger phrenic motor neurons impacts nerve conduction to muscle at higher frequencies and may contribute to DIAm sarcopenia in old rats. NEW & NOTEWORTHY Diaphragm muscle (DIAm) sarcopenia, phrenic motor neuron loss, and perturbations of neuromuscular junctions (NMJs) are well described in aged rodents and selectively affect FInt and FF motor units. Less attention has been paid to the motor unit-specific aspects of nerve-muscle conduction. In old rats, increased neuromuscular transmission failure occurred at stimulation frequencies where FInt and FF motor units exhibit conduction failures, along with decreased apposition of pre- and postsynaptic domains of DIAm NMJs of these units.
39

Krivoi, Igor, und Alexey Petrov. „Cholesterol and the Safety Factor for Neuromuscular Transmission“. International Journal of Molecular Sciences 20, Nr. 5 (28.02.2019): 1046. http://dx.doi.org/10.3390/ijms20051046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A present review is devoted to the analysis of literature data and results of own research. Skeletal muscle neuromuscular junction is specialized to trigger the striated muscle fiber contraction in response to motor neuron activity. The safety factor at the neuromuscular junction strongly depends on a variety of pre- and postsynaptic factors. The review focuses on the crucial role of membrane cholesterol to maintain a high efficiency of neuromuscular transmission. Cholesterol metabolism in the neuromuscular junction, its role in the synaptic vesicle cycle and neurotransmitter release, endplate electrogenesis, as well as contribution of cholesterol to the synaptogenesis, synaptic integrity, and motor disorders are discussed.
40

Ermilov, Leonid G., Juan N. Pulido, Fawn W. Atchison, Wen-Zhi Zhan, Mark H. Ereth, Gary C. Sieck und Carlos B. Mantilla. „Impairment of diaphragm muscle force and neuromuscular transmission after normothermic cardiopulmonary bypass: effect of low-dose inhaled CO“. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 298, Nr. 3 (März 2010): R784—R789. http://dx.doi.org/10.1152/ajpregu.00737.2009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Cardiopulmonary bypass (CPB) is associated with significant postoperative morbidity, but its effects on the neuromuscular system are unclear. Recent studies indicate that even relatively short periods of mechanical ventilation result in significant neuromuscular effects. Carbon monoxide (CO) has gained recent attention as therapy to reduce the deleterious effects of CPB. We hypothesized that 1) CPB results in impaired neuromuscular transmission and reduced diaphragm force generation; and 2) CO treatment during CPB will mitigate these effects. In adult male Sprague-Dawley rats, diaphragm muscle-specific force and neuromuscular transmission properties were measured 90 min after weaning from normothermic CPB (1 h). During CPB, either low-dose inhaled CO (250 ppm) or air was administered. The short period of mechanical ventilation used in the present study (∼3 h) did not adversely affect diaphragm muscle contractile properties or neuromuscular transmission. CPB elicited a significant decrease in isometric diaphragm muscle-specific force compared with time-matched, mechanically ventilated rats (∼25% decline in both twitch and tetanic force). Diaphragm muscle fatigability to 40-Hz repetitive stimulation did not change significantly. Neuromuscular transmission failure during repetitive activation was 60 ± 2% in CPB animals compared with 76 ± 4% in mechanically ventilated rats ( P < 0.05). CO treatment during CPB abrogated the neuromuscular effects of CPB, such that diaphragm isometric twitch force and neuromuscular transmission were no longer significantly different from mechanically ventilated rats. Thus, CPB has important detrimental effects on diaphragm muscle contractility and neuromuscular transmission that are largely mitigated by CO treatment. Further studies are needed to ascertain the underlying mechanisms of CPB-induced neuromuscular dysfunction and to establish the potential role of CO therapy.
41

Grishin, S. N., A. E. Khairullin, A. Y. Teplov und M. A. Mukhamedyarov. „Neuromuscular Transmission in a Barium Environment“. Biophysics 67, Nr. 3 (Juni 2022): 457–60. http://dx.doi.org/10.1134/s000635092203006x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Stanec, A., und T. Baker. „Physiology and pharmacology of neuromuscular transmission“. Current Opinion in Anaesthesiology 2, Nr. 4 (August 1989): 470–73. http://dx.doi.org/10.1097/00001503-198908000-00018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Engbæk, J. „Measurement and monitoring of neuromuscular transmission“. Current Opinion in Anaesthesiology 3, Nr. 4 (August 1990): 625–29. http://dx.doi.org/10.1097/00001503-199003040-00022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Engbæk, J. „Measurement and monitoring of neuromuscular transmission“. Current Opinion in Anaesthesiology 3, Nr. 4 (August 1990): 625–29. http://dx.doi.org/10.1097/00001503-199008000-00022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Kopman, David, und Cynthia A. Lien. „Physiology and Pharmacology of Neuromuscular Transmission“. ASA Refresher Courses in Anesthesiology 37, Nr. 1 (Juli 2009): 107–17. http://dx.doi.org/10.1097/asa.0b013e3181a6898d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Ertas, Mustafa, und M. Baris Baslo. „Abnormal Neuromuscular Transmission in Cluster Headache“. Headache: The Journal of Head and Face Pain 43, Nr. 6 (Juni 2003): 616–20. http://dx.doi.org/10.1046/j.1526-4610.2003.03103.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

LOAN, P. B., L. D. PAXTON, R. K. MIRAKHUR, F. M. CONNOLLY und E. P. McCOY. „The TOF-Guard neuromuscular transmission monitor.“ Anaesthesia 50, Nr. 8 (August 1995): 699–702. http://dx.doi.org/10.1111/j.1365-2044.1995.tb06097.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Ross, R. „Neuromuscular transmission in the 17th century“. Journal of Neurology, Neurosurgery & Psychiatry 51, Nr. 10 (01.10.1988): 1268. http://dx.doi.org/10.1136/jnnp.51.10.1268.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Klose, M. K. „Stress-Induced Thermoprotection of Neuromuscular Transmission“. Integrative and Comparative Biology 44, Nr. 1 (01.02.2004): 14–20. http://dx.doi.org/10.1093/icb/44.1.14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Massey, Janice. „Electromyography in Disorders of Neuromuscular Transmission“. Seminars in Neurology 10, Nr. 01 (März 1990): 6–11. http://dx.doi.org/10.1055/s-2008-1041247.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie