Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Neuroimaging biomarkers“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Neuroimaging biomarkers" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Neuroimaging biomarkers"
Hager, Brandon M., und Matcheri S. Keshavan. „Neuroimaging Biomarkers for Psychosis“. Current Behavioral Neuroscience Reports 2, Nr. 2 (06.03.2015): 102–11. http://dx.doi.org/10.1007/s40473-015-0035-4.
Der volle Inhalt der QuelleMishra, Asht Mangal, Harrison Bai, Alexandra Gribizis und Hal Blumenfeld. „Neuroimaging biomarkers of epileptogenesis“. Neuroscience Letters 497, Nr. 3 (Juni 2011): 194–204. http://dx.doi.org/10.1016/j.neulet.2011.01.076.
Der volle Inhalt der QuelleMackey, Sean, Henry T. Greely und Katherine T. Martucci. „Neuroimaging-based pain biomarkers“. PAIN Reports 4, Nr. 4 (2019): e762. http://dx.doi.org/10.1097/pr9.0000000000000762.
Der volle Inhalt der QuelleRisacher, Shannon L. „Neuroimaging in Dementia“. CONTINUUM: Lifelong Learning in Neurology 30, Nr. 6 (Dezember 2024): 1761–89. https://doi.org/10.1212/con.0000000000001509.
Der volle Inhalt der QuelleRusso, Antonio, Marcello Silvestro, Alessandro Tessitore und Gioacchino Tedeschi. „Functional Neuroimaging Biomarkers in Migraine: Diagnostic, Prognostic and Therapeutic Implications“. Current Medicinal Chemistry 26, Nr. 34 (12.12.2019): 6236–52. http://dx.doi.org/10.2174/0929867325666180406115427.
Der volle Inhalt der QuelleLai, Chien-Han. „Promising Neuroimaging Biomarkers in Depression“. Psychiatry Investigation 16, Nr. 9 (25.09.2019): 662–70. http://dx.doi.org/10.30773/pi.2019.07.25.2.
Der volle Inhalt der QuelleHouenou, Josselin. „Neuroimaging biomarkers in bipolar disorder“. Frontiers in Bioscience E4, Nr. 2 (2012): 593–606. http://dx.doi.org/10.2741/e402.
Der volle Inhalt der Quellevan der Miesen, Maite M., Martin A. Lindquist und Tor D. Wager. „Neuroimaging-based biomarkers for pain“. PAIN Reports 4, Nr. 4 (2019): e751. http://dx.doi.org/10.1097/pr9.0000000000000751.
Der volle Inhalt der QuelleMok, Vincent. „Neuroimaging biomarkers in vascular dementia“. Journal of the Neurological Sciences 455 (Dezember 2023): 120937. http://dx.doi.org/10.1016/j.jns.2023.120937.
Der volle Inhalt der QuelleNestor, Peter. „Neuroimaging biomarkers in Alzheimer's disease“. Journal of the Neurological Sciences 455 (Dezember 2023): 120938. http://dx.doi.org/10.1016/j.jns.2023.120938.
Der volle Inhalt der QuelleDissertationen zum Thema "Neuroimaging biomarkers"
Kawadler, J. M. „Neuroimaging biomarkers in paediatric sickle cell disease“. Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1464063/.
Der volle Inhalt der QuelleSantos, Santos Miguel Ángel. „Clinicopathologic correlations and neuroimaging biomarkers in primary progressive aphasia“. Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/457508.
Der volle Inhalt der QuelleThe studies included in this thesis addressed the issue of clinicopathologic correlation in neurodegenerative disease and more specifically in primary progressive aphasia (PPA). In the first study we analyzed rates of amyloid PET positivity to test the hypothesis that classification according to the recently established consensus PPA variant diagnostic criteria would result in groups with largely homogeneous amyloid biomarker profiles. We found that the current classification scheme was highly predictive of amyloid biomarker status with logopenic variant (lvPPA) being associated to amyloid positivity in more than 95% of cases. Furthermore, the amyloid biomarker discordant cases (amyloid positive semantic variant [svPPA] and non-fluent/agrammatic variant [nfvPPA]) that had available autopsy data received a primary pathologic diagnosis of frontotemporal lobar degeneration (FTLD) with presence of contributing Alzheimer’s disease (AD) pathology, suggesting that cases of amyloid biomarker positive svPPA and nvfPPA might be more indicative of mixed FTLD – AD pathology than primary AD. In the second study we identified clinical and neuroimaging features that may help predict underlying pathology in nfvPPA which is the most pathologically heterogeneous of the PPA clinical variants. Greater dysarthria and relative predominance of white-matter atrophy at presentation and greater rate of brainstem atrophy and appearance of brainstem clinical signs at follow-up were characteristic of underlying nfvPPA-progressive supranuclear palsy. NfvPPA-corticobasal degeneration showed more impairment in sentence comprehension, verbal working memory, and greater grey matter atrophy at presentation along with spread of atrophy to anterior cortical structures and greater presence of behavioral symptoms at follow-up. The third study quantified and evaluated the ability of different cognitive and neuroimaging measures to predict which primary progressive aphasia patients have presumptive Alzheimer’s disease pathology (using amyloid-PET as a surrogate marker). A data-driven analysis was able to correctly classify 96% amyloid negative and 86% amyloid positive cases. We found that measures of visual memory and behavioral impairment show similar ability to predict amyloid-PET status as the best performing language measures, which were motor speech and sentence repetition suggesting non-language measures hold potential value for improving differential diagnosis. Finally, the last study also investigated the relationship between amyloid deposition measured by PET-PiB imaging and brain atrophy. We found that, within lvPPA (which is generally due to AD), grey-matter volume loss was highly asymmetric and predominant in language regions whereas amyloid deposition was diffuse throughout association cortices and symmetric between hemispheres suggesting another factor different from amyloid deposition is driving progression of brain atrophy.
Rittman, Timothy. „Connectivity biomarkers in neurodegenerative tauopathies“. Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/248866.
Der volle Inhalt der QuelleAdanyeguh, Isaac Mawusi. „Biomarkers Identification and Disease Modeling using Multimodal Neuroimaging Approaches in Polyglutamine Diseases“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066279/document.
Der volle Inhalt der QuelleMutations in different gene loci that lead to the encoding of the unstable and expanded glutamine-encoding cytosine-adenine-guanine (CAG) repeats results in the group of diseases known as the polyglutamine diseases. This project focuses on the most common forms which are Huntington disease (HD) and spinocerebellar ataxia (SCA) types 1, 2, 3 and 7. These are autosomal dominant diseases responsible for severe movement disorders and are thought to share common pathophysiological pathways with a major emphasis on metabolic dysfunction. The availability of genetic testing and their predominantly adult onset opens a window for therapeutic intervention before symptoms onset. However, current clinical scales are not sensitive and cannot effectively be used to evaluate individuals at the presymptomatic stage of the diseases. This prompts the need for biomarkers that are sensitive to macroscopic and microscopic changes that may occur prior to disease onset. Magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques present non-invasive approaches to extract pertinent information that otherwise would not be possible with clinical scales. In this work therefore, we present a combination of different MRI and MRS techniques to identify robust biomarkers in HD and SCA. We also present therapeutic approaches that hold promise in HD. Likewise, we show that imaging biomarkers have higher effect sizes than clinical scales. Finally, we combine multimodal data – volumetry, MRS, metabolomics and lipidomic – from SCA into a model that best explains the pathology
Heise, Verena. „How can magnetoencephalography and magnetic resonance imaging improve our understanding of genetic susceptibility to Alzheimer's disease?“ Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:a3c670f3-aef5-4f34-b983-37f21d0019ad.
Der volle Inhalt der QuelleWilson, D. R. „Clinical relevance of neuroimaging biomarkers of small vessel disease in relation to intracranial haemorrhage“. Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10053154/.
Der volle Inhalt der QuelleCARLI, GIULIA. „Parkinson’s disease and dementia in the α-synuclein spectrum: the role of cognitive assessment and in vivo neuroimaging biomarkers“. Doctoral thesis, Università Vita-Salute San Raffaele, 2021. http://hdl.handle.net/20.500.11768/122897.
Der volle Inhalt der QuelleLa malattia di Parkinson è la malattia neurologica con il tasso di crescita più rapida. L'1% della popolazione mondiale oltre i 60 anni ha una diagnosi di Parkinson. Il morbo di Parkinson presenta un quadro clinico complesso ed eterogeneo durante il decorso della malattia, di cui la demenza rappresenta la condizione più grave. Questa tesi indaga i meccanismi neurobiologici e le caratteristiche cognitive dei pazienti affetti da Malattia di Parkinson con un grave fenotipo clinico – che sviluppano un deterioramento cognitivo raggiungendo la condizione di demenza. Gli studi inclusi in questo elaborato hanno contribuito a identificare fattori di rischio, biomarcatori, caratteristiche cognitive e fonti di variabilità clinica della demenza nei disturbi a corpi di Lewy (LBD) con molteplici approcci metodologici ai dati di neuroimaging. Inoltre, è stato esplorato il quadro cognitivo dello spettro clinico LBD combinando approcci cross-sectional e longitudinali. Questa tesi fornisce nuove evidenze sui fattori di rischio modificabili e non modificabili che influenzano lo sviluppo di fenotipi gravi all'interno della LBD e sui fattori che agiscono sui tempi di insorgenza dei sintomi della demenza. Identifica inoltre validi candidati biomarcatori e marcatori cognitivi per la profilazione del rischio di demenza sin dalle fasi precliniche.
Wang, Chenyu. „Improving the specificity of quantitative neuroimaging biomarkers for monitoring disease progression and understanding disease mechanisms in multiple sclerosis with diffusion magnetic resonance imaging“. Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17939.
Der volle Inhalt der QuellePierrefeu, Amicie de. „Apprentissage automatique avec parcimonie structurée : application au phénotypage basé sur la neuroimagerie pour la schizophrénie“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS329/document.
Der volle Inhalt der QuelleSchizophrenia is a disabling chronic mental disorder characterized by various symptoms such as hallucinations, delusions as well as impairments in high-order cognitive functions. Over the years, Magnetic Resonance Imaging (MRI) has been increasingly used to gain insights on the structural and functional abnormalities inherent to the disorder. Recent progress in machine learning together with the availability of large datasets now pave the way to capture complex relationships to make inferences at an individual level in the perspective of computer-aided diagnosis/prognosis or biomarkers discovery. Given the limitations of state-of-the-art sparse algorithms to produce stable and interpretable predictive signatures, we have pushed forward the regularization approaches extending classical algorithms with structural constraints issued from the known biological structure (spatial structure of the brain) in order to force the solution to adhere to biological priors, producing more plausible interpretable solutions. Such structured sparsity constraints have been leveraged to identify first, a neuroanatomical signature of schizophrenia and second a neuroimaging functional signature of hallucinations in patients with schizophrenia. Additionally, we also extended the popular PCA (Principal Component Analysis) with spatial regularization to identify interpretable patterns of the neuroimaging variability in either functional or anatomical meshes of the cortical surface
Sendi, Shahbaz. „Biomarkers of major depressive disorder : a study of the interaction of genetic, neuroimaging and endocrine factors, and the effects of childhood adversity, in major depressive disorder“. Thesis, King's College London (University of London), 2016. http://kclpure.kcl.ac.uk/portal/en/theses/biomarkers-of-major-depressive-disorder(743a993b-8c01-46be-8707-855dc01bc355).html.
Der volle Inhalt der QuelleBücher zum Thema "Neuroimaging biomarkers"
Gordon, Brian A., Stephanie J. B. Vos und Anne M. Fagan. Neuroimaging and Cerebrospinal Fluid Biomarkers of Alzheimer’s Disease. Herausgegeben von Dennis S. Charney, Eric J. Nestler, Pamela Sklar und Joseph D. Buxbaum. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190681425.003.0052.
Der volle Inhalt der QuelleChen, Jiu, Rong Chen und Yong Liu, Hrsg. Neuroimaging Biomarkers and Cognition in Alzheimer’s disease Spectrum. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88974-713-9.
Der volle Inhalt der QuelleRitsner, Michael S. Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes : Volume II: Neuroanatomical and Neuroimaging Endophenotypes and Biomarkers. Springer Netherlands, 2010.
Den vollen Inhalt der Quelle findenWu, Ping, Behrooz Hooshyar Yousefi, Wei Cheng und Binbin Nie, Hrsg. Biomarkers from Multi-tracer and Multi-modal Neuroimaging in Age-related Neurodegenerative Diseases. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88976-956-8.
Der volle Inhalt der QuelleWarner, Matthew A., Carlos Marquez de la Plata, David S. Liebeskind und Ramon Diaz-Arrastia. Imaging Assessment of Brain Injury. Herausgegeben von David L. Reich, Stephan Mayer und Suzan Uysal. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190280253.003.0003.
Der volle Inhalt der QuelleSteele, Vaughn R., Vani Pariyadath, Rita Z. Goldstein und Elliot A. Stein. Reward Circuitry and Drug Addiction. Herausgegeben von Dennis S. Charney, Eric J. Nestler, Pamela Sklar und Joseph D. Buxbaum. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190681425.003.0044.
Der volle Inhalt der QuellePerez, David L., und Valerie Voon. The Neurobiology of PNES and Other Functional Neurological Symptoms. Herausgegeben von Barbara A. Dworetzky und Gaston C. Baslet. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190265045.003.0006.
Der volle Inhalt der QuelleGlannon, Walter. Psychiatric Neuroethics II. Herausgegeben von John Z. Sadler, K. W. M. Fulford und Werdie (C W. ). van Staden. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780198732372.013.31.
Der volle Inhalt der QuelleHilsabeck, Robin C., und Gayle Y. Ayers, Hrsg. Dementia. Oxford University PressNew York, 2024. http://dx.doi.org/10.1093/med/9780197690024.001.0001.
Der volle Inhalt der QuelleMiskowiak, Kamilla W., und Lars V. Kessing. Cognitive enhancement in bipolar disorder: current evidence and methodological considerations. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198748625.003.0026.
Der volle Inhalt der QuelleBuchteile zum Thema "Neuroimaging biomarkers"
Singleterry, Sydney, Damek Homiack und Olusola Ajilore. „Functional Neuroimaging Biomarkers“. In Biomarkers in Neuropsychiatry, 65–80. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-43356-6_5.
Der volle Inhalt der QuelleTost, Heike, und Andreas Meyer-Lindenberg. „Neuroimaging Biomarkers in Schizophrenia“. In Biomarkers for Psychiatric Disorders, 235–71. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-79251-4_11.
Der volle Inhalt der QuelleSanches, Marsal. „Structural Neuroimaging Biomarkers in Psychiatry“. In Biomarkers in Neuropsychiatry, 55–64. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-43356-6_4.
Der volle Inhalt der QuelleGalderisi, Silvana, Giulia Maria Giordano und Lynn E. DeLisi. „Neuroimaging: Diagnostic Boundaries and Biomarkers“. In Neuroimaging of Schizophrenia and Other Primary Psychotic Disorders, 1–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97307-4_1.
Der volle Inhalt der QuelleChong, M. S., und W. S. Lim. „Neuroimaging Biomarkers in Alzheimer's Disease“. In The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes, 3–15. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9831-4_1.
Der volle Inhalt der QuelleHolmes, Sophie, und Sule Tinaz. „Neuroimaging Biomarkers in Parkinson’s Disease“. In Advances in Neurobiology, 617–63. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-69491-2_21.
Der volle Inhalt der QuelleMasdeu, Joseph C., und Belen Pascual. „Neuroimaging Biomarkers in Alzheimer’s Disease and Related Disorders“. In Biomarkers in Neuropsychiatry, 163–88. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-43356-6_11.
Der volle Inhalt der QuelleFranklin, Teresa R., Joel Mumma, Kanchana Jagannathan, Reagan R. Wetherill und Anna Rose Childress. „Morphometric Biomarkers of Addiction and Treatment Response“. In Neuroimaging and Psychosocial Addiction Treatment, 111–24. London: Palgrave Macmillan UK, 2015. http://dx.doi.org/10.1057/9781137362650_8.
Der volle Inhalt der QuelleKim, Geon Ha, Jihye Hwang und Jee Hyang Jeong. „Classical Neuroimaging Biomarkers of Vascular Cognitive Impairment“. In Stroke Revisited, 99–112. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-1433-8_9.
Der volle Inhalt der QuelleWang, Lei, und John G. Csernansky. „Recent Advances in Neuroimaging Biomarkers of Schizophrenia“. In Schizophrenia, 71–103. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0656-7_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Neuroimaging biomarkers"
van de Zande, Nadine A., Eidrees Ghariq, Jeroen HJM de Bresser, Raymund AC Roos und Susanne T. de Bot. „E14 Neuroimaging biomarkers in Huntington’s disease“. In EHDN 2022 Plenary Meeting, Bologna, Italy, Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jnnp-2022-ehdn.90.
Der volle Inhalt der QuelleNi, Yunjia, Trenton House, Ashton Huppert Steed, Alma Jukic, Richard Dortch und Shawn Stevens. „Comprehensive Review of Strategic Neuroimaging Biomarkers in Vestibular Schwannoma“. In 33rd Annual Meeting North American Skull Base Society. Georg Thieme Verlag KG, 2024. http://dx.doi.org/10.1055/s-0044-1780395.
Der volle Inhalt der QuelleLaton, Jorne, Jeroen Van Schependom, Jeroen Gielen, Jeroen Decoster, Tim Moons, Jacques De Keyser, Marc De Hert und Guy Nagels. „In search of biomarkers for schizophrenia using electroencephalography“. In 2014 International Workshop on Pattern Recognition in Neuroimaging (PRNI). IEEE, 2014. http://dx.doi.org/10.1109/prni.2014.6858527.
Der volle Inhalt der QuelleObertino, S., G. Roffo, C. Granziera und G. Menegaz. „Infinite feature selection on shore-based biomarkers reveals connectivity modulation after stroke“. In 2016 International Workshop on Pattern Recognition in Neuroimaging (PRNI). IEEE, 2016. http://dx.doi.org/10.1109/prni.2016.7552347.
Der volle Inhalt der QuelleKumar, Kuldeep, Christian Desrosiers, Ahmad Chaddad und Matthew Toews. „Spatially constrained sparse regression for the data-driven discovery of Neuroimaging biomarkers“. In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7899956.
Der volle Inhalt der QuelleAcar, Evrim, Yuri Levin-Schwartz, Vince D. Calhoun und Tulay Adali. „ACMTF for fusion of multi-modal neuroimaging data and identification of biomarkers“. In 2017 25th European Signal Processing Conference (EUSIPCO). IEEE, 2017. http://dx.doi.org/10.23919/eusipco.2017.8081286.
Der volle Inhalt der QuelleObafemi-Ajayi, Tayo, Khalid Al-Jabery, Lauren Salminen, David Laidlaw, Ryan Cabeen, Donald Wunsch und Robert Paul. „Neuroimaging biomarkers of cognitive decline in healthy older adults via unified learning“. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2017. http://dx.doi.org/10.1109/ssci.2017.8280937.
Der volle Inhalt der Quelle„USING MACHINE LEARNING FOR EARLY ALZHEIMER'S DETECTION IN COGNITIVE NEUROSCIENCE“. In RAD Conference. RAD Centre, Niš, Serbia, 2024. http://dx.doi.org/10.21175/radproc.2024.01.
Der volle Inhalt der QuelleCosta, Larissa Maria de Paula Rebouças da, Gabriel de Souza Torres, Kauan Alves Sousa Madruga und Poliana Rafaela dos Santos. „Biomarkers in Alzheimer’s disease“. In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.670.
Der volle Inhalt der QuelleLiu, Qing, Defu Yang, Jingwen Zhang, Ziming Wei, Guorong Wu und Minghan Chen. „Analyzing The Spatiotemporal Interaction And Propagation Of Atn Biomarkers In Alzheimer’s Disease Using Longitudinal Neuroimaging Data“. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021. http://dx.doi.org/10.1109/isbi48211.2021.9434021.
Der volle Inhalt der Quelle