Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Neurodynamic optimization.

Zeitschriftenartikel zum Thema „Neurodynamic optimization“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Neurodynamic optimization" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Ji, Zheng, Xu Cai, and Xuyang Lou. "A Quantum-Behaved Neurodynamic Approach for Nonconvex Optimization with Constraints." Algorithms 12, no. 7 (2019): 138. http://dx.doi.org/10.3390/a12070138.

Der volle Inhalt der Quelle
Annotation:
This paper presents a quantum-behaved neurodynamic swarm optimization approach to solve the nonconvex optimization problems with inequality constraints. Firstly, the general constrained optimization problem is addressed and a high-performance feedback neural network for solving convex nonlinear programming problems is introduced. The convergence of the proposed neural network is also proved. Then, combined with the quantum-behaved particle swarm method, a quantum-behaved neurodynamic swarm optimization (QNSO) approach is presented. Finally, the performance of the proposed QNSO algorithm is eva
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Le, Xinyi, Sijie Chen, Fei Li, Zheng Yan, and Juntong Xi. "Distributed Neurodynamic Optimization for Energy Internet Management." IEEE Transactions on Systems, Man, and Cybernetics: Systems 49, no. 8 (2019): 1624–33. http://dx.doi.org/10.1109/tsmc.2019.2898551.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ahmadi-Asl, Salman, Valentin Leplat, Anh Huy Phan, and Andrzej Cichocki. "Nonnegative Tensor Decomposition via Collaborative Neurodynamic Optimization." SIAM Journal on Scientific Computing 47, no. 1 (2025): C100—C125. https://doi.org/10.1137/23m1627304.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Li, Guocheng, and Zheng Yan. "Reconstruction of sparse signals via neurodynamic optimization." International Journal of Machine Learning and Cybernetics 10, no. 1 (2017): 15–26. http://dx.doi.org/10.1007/s13042-017-0694-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Leung, Man-Fai, and Jun Wang. "A Collaborative Neurodynamic Approach to Multiobjective Optimization." IEEE Transactions on Neural Networks and Learning Systems 29, no. 11 (2018): 5738–48. http://dx.doi.org/10.1109/tnnls.2018.2806481.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ma, Litao, Jiqiang Chen, Sitian Qin, Lina Zhang, and Feng Zhang. "An Efficient Neurodynamic Approach to Fuzzy Chance-constrained Programming." International Journal on Artificial Intelligence Tools 30, no. 01 (2021): 2140001. http://dx.doi.org/10.1142/s0218213021400017.

Der volle Inhalt der Quelle
Annotation:
In both practical applications and theoretical analysis, there are many fuzzy chance-constrained optimization problems. Currently, there is short of real-time algorithms for solving such problems. Therefore, in this paper, a continuous-time neurodynamic approach is proposed for solving a class of fuzzy chance-constrained optimization problems. Firstly, an equivalent deterministic problem with inequality constraint is discussed, and then a continuous-time neurodynamic approach is proposed. Secondly, a sufficient and necessary optimality condition of the considered optimization problem is obtain
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yan, Zheng, Jun Wang, and Guocheng Li. "A collective neurodynamic optimization approach to bound-constrained nonconvex optimization." Neural Networks 55 (July 2014): 20–29. http://dx.doi.org/10.1016/j.neunet.2014.03.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wang, Tong, Hao Cui, Zhongyi Zhang, and Jian Wei. "A Neurodynamic Approach for SWIPT Power Splitting Optimization." Journal of Physics: Conference Series 2517, no. 1 (2023): 012010. http://dx.doi.org/10.1088/1742-6596/2517/1/012010.

Der volle Inhalt der Quelle
Annotation:
Abstract Simultaneous wireless information and power transfer (SWIPT) systems using energy from RF signals can effectively solve the energy shortage of wireless devices. However, the existing SWIPT optimization methods using numerical algorithms are difficult to solve the non-convex problem and to adapt to the dynamic communication circumstances. In this paper, a duplex neurodynamic optimization method is used to address the SWIPT system’s power partitioning issue. The information rate maximization problem of the SWIPT system is framed as a biconvex problem. A duplex recurrent neural network i
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Liu, Bao, Xuehui Mei, Haijun Jiang, and Lijun Wu. "A Nonpenalty Neurodynamic Model for Complex-Variable Optimization." Discrete Dynamics in Nature and Society 2021 (February 16, 2021): 1–10. http://dx.doi.org/10.1155/2021/6632257.

Der volle Inhalt der Quelle
Annotation:
In this paper, a complex-variable neural network model is obtained for solving complex-variable optimization problems described by differential inclusion. Based on the nonpenalty idea, the constructed algorithm does not need to design penalty parameters, that is, it is easier to be designed in practical applications. And some theorems for the convergence of the proposed model are given under suitable conditions. Finally, two numerical examples are shown to illustrate the correctness and effectiveness of the proposed optimization model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhao, You, Xiaofeng Liao, and Xing He. "Novel projection neurodynamic approaches for constrained convex optimization." Neural Networks 150 (June 2022): 336–49. http://dx.doi.org/10.1016/j.neunet.2022.03.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Yan, Zheng, Jianchao Fan, and Jun Wang. "A Collective Neurodynamic Approach to Constrained Global Optimization." IEEE Transactions on Neural Networks and Learning Systems 28, no. 5 (2017): 1206–15. http://dx.doi.org/10.1109/tnnls.2016.2524619.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Liu, Qingshan, Shaofu Yang, and Jun Wang. "A Collective Neurodynamic Approach to Distributed Constrained Optimization." IEEE Transactions on Neural Networks and Learning Systems 28, no. 8 (2017): 1747–58. http://dx.doi.org/10.1109/tnnls.2016.2549566.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Qin, Sitian, Xinyi Le, and Jun Wang. "A Neurodynamic Optimization Approach to Bilevel Quadratic Programming." IEEE Transactions on Neural Networks and Learning Systems 28, no. 11 (2017): 2580–91. http://dx.doi.org/10.1109/tnnls.2016.2595489.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Yu, Xin, Qingzhou Huang, and Rixin Lin. "A reformulation neurodynamic algorithm for distributed nonconvex optimization." Neurocomputing 635 (June 2025): 130023. https://doi.org/10.1016/j.neucom.2025.130023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Wu, Dawen, and Abdel Lisser. "Solving Constrained Pseudoconvex Optimization Problems with deep learning-based neurodynamic optimization." Mathematics and Computers in Simulation 219 (May 2024): 424–34. http://dx.doi.org/10.1016/j.matcom.2023.12.032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Leung, Man-Fai, and Jun Wang. "Cardinality-constrained portfolio selection based on collaborative neurodynamic optimization." Neural Networks 145 (January 2022): 68–79. http://dx.doi.org/10.1016/j.neunet.2021.10.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Xu, Chen, Yiyuan Chai, Sitian Qin, Zhenkun Wang, and Jiqiang Feng. "A neurodynamic approach to nonsmooth constrained pseudoconvex optimization problem." Neural Networks 124 (April 2020): 180–92. http://dx.doi.org/10.1016/j.neunet.2019.12.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Liu, Shuxin, Haijun Jiang, Liwei Zhang, and Xuehui Mei. "A neurodynamic optimization approach for complex-variables programming problem." Neural Networks 129 (September 2020): 280–87. http://dx.doi.org/10.1016/j.neunet.2020.06.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Che, Hangjun, and Jun Wang. "A collaborative neurodynamic approach to global and combinatorial optimization." Neural Networks 114 (June 2019): 15–27. http://dx.doi.org/10.1016/j.neunet.2019.02.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Yan, Zheng, and Jun Wang. "Nonlinear Model Predictive Control Based on Collective Neurodynamic Optimization." IEEE Transactions on Neural Networks and Learning Systems 26, no. 4 (2015): 840–50. http://dx.doi.org/10.1109/tnnls.2014.2387862.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Fan, Jianchao, and Jun Wang. "A Collective Neurodynamic Optimization Approach to Nonnegative Matrix Factorization." IEEE Transactions on Neural Networks and Learning Systems 28, no. 10 (2017): 2344–56. http://dx.doi.org/10.1109/tnnls.2016.2582381.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Yang, Shaofu, Qingshan Liu, and Jun Wang. "A Collaborative Neurodynamic Approach to Multiple-Objective Distributed Optimization." IEEE Transactions on Neural Networks and Learning Systems 29, no. 4 (2018): 981–92. http://dx.doi.org/10.1109/tnnls.2017.2652478.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Che, Hangjun, and Jun Wang. "A Two-Timescale Duplex Neurodynamic Approach to Biconvex Optimization." IEEE Transactions on Neural Networks and Learning Systems 30, no. 8 (2019): 2503–14. http://dx.doi.org/10.1109/tnnls.2018.2884788.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Dai, Chengchen, Hangjun Che, and Man-Fai Leung. "A Neurodynamic Optimization Approach for L1 Minimization with Application to Compressed Image Reconstruction." International Journal on Artificial Intelligence Tools 30, no. 01 (2021): 2140007. http://dx.doi.org/10.1142/s0218213021400078.

Der volle Inhalt der Quelle
Annotation:
This paper presents a neurodynamic optimization approach for l1 minimization based on an augmented Lagrangian function. By using the threshold function in locally competitive algorithm (LCA), subgradient at a nondifferential point is equivalently replaced with the difference of the neuronal state and its mapping. The efficacy of the proposed approach is substantiated by reconstructing three compressed images.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Jiang, Xinrui, Sitian Qin, Xiaoping Xue, and Xinzhi Liu. "A second-order accelerated neurodynamic approach for distributed convex optimization." Neural Networks 146 (February 2022): 161–73. http://dx.doi.org/10.1016/j.neunet.2021.11.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Qin, Sitian, Yadong Liu, Xiaoping Xue, and Fuqiang Wang. "A neurodynamic approach to convex optimization problems with general constraint." Neural Networks 84 (December 2016): 113–24. http://dx.doi.org/10.1016/j.neunet.2016.08.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Le, Xinyi, and Jun Wang. "A Two-Time-Scale Neurodynamic Approach to Constrained Minimax Optimization." IEEE Transactions on Neural Networks and Learning Systems 28, no. 3 (2017): 620–29. http://dx.doi.org/10.1109/tnnls.2016.2538288.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Wang, Jiasen, Jun Wang, and Hangjun Che. "Task Assignment for Multivehicle Systems Based on Collaborative Neurodynamic Optimization." IEEE Transactions on Neural Networks and Learning Systems 31, no. 4 (2020): 1145–54. http://dx.doi.org/10.1109/tnnls.2019.2918984.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Che, Hangjun, and Jun Wang. "A Two-Timescale Duplex Neurodynamic Approach to Mixed-Integer Optimization." IEEE Transactions on Neural Networks and Learning Systems 32, no. 1 (2021): 36–48. http://dx.doi.org/10.1109/tnnls.2020.2973760.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Le, Xinyi, Sijie Chen, Zheng Yan, and Juntong Xi. "A Neurodynamic Approach to Distributed Optimization With Globally Coupled Constraints." IEEE Transactions on Cybernetics 48, no. 11 (2018): 3149–58. http://dx.doi.org/10.1109/tcyb.2017.2760908.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Liu, Na, and Sitian Qin. "A Novel Neurodynamic Approach to Constrained Complex-Variable Pseudoconvex Optimization." IEEE Transactions on Cybernetics 49, no. 11 (2019): 3946–56. http://dx.doi.org/10.1109/tcyb.2018.2855724.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Jia, Wenwen, Tingwen Huang, and Sitian Qin. "A collective neurodynamic penalty approach to nonconvex distributed constrained optimization." Neural Networks 171 (March 2024): 145–58. http://dx.doi.org/10.1016/j.neunet.2023.12.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Drozdovski, A. K., A. A. Banayan, and L. G. Ulyaeva. "Psycho-physiological approach to the problem of giftedness and high-quality sports selection." Current Issues of Sports Psychology and Pedagogy 1, no. 1-2 (2021): 100–114. http://dx.doi.org/10.15826/spp.2021.1-2.11.

Der volle Inhalt der Quelle
Annotation:
The article notes that the problem of giftedness (talent) and highquality sports selection cannot be solved only by measuring anthropometric indicators, or only by tests-questionnaires, conversations, interviews, observations, which are dominate in the sports psychologists arsenal of nowadays. Meanwhile, the scientific developments of the national differential psychophysiology, that expand the possibilities for solving the problems indicated in the article, are ignored. The psychophysiological approach proposed by the authors is based on the method for assessing the natural predisposition of t
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Demin, D. B., L. V. Poskotinova, and Ye V. Krivonogova. "EEG CHARACTERISTICS AND THYROID PROFILE RATIO IN ADOLESCENTS OF SUBPOLAR AND POLAR EUROPEAN NORTH AREAS." Bulletin of Siberian Medicine 12, no. 1 (2013): 24–29. http://dx.doi.org/10.20538/1682-0363-2013-1-24-29.

Der volle Inhalt der Quelle
Annotation:
Features of brain bioelectric activity and thyroid system in adolescents living in Subpolar andPolar regionsof the North are considered. Hyperactivity of subcortical diencephalic brain structures in adolescents of the Polar region is revealed. Adolescents of Subpolar region have more intensive age optimization of neurodynamic processes. There are noted latitude distinctions of thyroid hormones role for age formation of brain bioelectric activity in adolescents.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Wang, Yadi, Xiaoping Li, and Jun Wang. "A neurodynamic optimization approach to supervised feature selection via fractional programming." Neural Networks 136 (April 2021): 194–206. http://dx.doi.org/10.1016/j.neunet.2021.01.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Chang, Xinyue, Yinliang Xu, and Hongbin Sun. "Online distributed neurodynamic optimization for energy management of renewable energy grids." International Journal of Electrical Power & Energy Systems 130 (September 2021): 106996. http://dx.doi.org/10.1016/j.ijepes.2021.106996.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Fang, Xiaomeng, Dong Pang, Juntong Xi, and Xinyi Le. "Distributed optimization for the multi-robot system using a neurodynamic approach." Neurocomputing 367 (November 2019): 103–13. http://dx.doi.org/10.1016/j.neucom.2019.08.032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Jiang, Xinrui, Sitian Qin, and Xiaoping Xue. "A penalty-like neurodynamic approach to constrained nonsmooth distributed convex optimization." Neurocomputing 377 (February 2020): 225–33. http://dx.doi.org/10.1016/j.neucom.2019.10.050.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

He, Shengzhan, Junjian Huang, and Xing He. "Collective Neurodynamic Optimization for Image Segmentation by Binary Model with Constraints." Cognitive Computation 12, no. 6 (2020): 1265–75. http://dx.doi.org/10.1007/s12559-020-09762-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Zeng, Zhigang, Andrzej Cichocki, Long Cheng, Youshen Xia, and Xiaolin Hu. "Guest Editorial Special Issue on Neurodynamic Systems for Optimization and Applications." IEEE Transactions on Neural Networks and Learning Systems 27, no. 2 (2016): 210–13. http://dx.doi.org/10.1109/tnnls.2016.2515458.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Nazemi, Alireza. "Solving general convex nonlinear optimization problems by an efficient neurodynamic model." Engineering Applications of Artificial Intelligence 26, no. 2 (2013): 685–96. http://dx.doi.org/10.1016/j.engappai.2012.09.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Lin, Meng, Zicong Xia, Shuting Sun, and Yang Liu. "Distributed neurodynamic optimization for optimal multicluster resource allocation with cardinality constraints." Information Sciences 712 (September 2025): 122138. https://doi.org/10.1016/j.ins.2025.122138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Yu, Dongmei, Shaowei Lin, Gehao Zhang, and Hongrui Yin. "Predefined-time with time-varying coefficients neurodynamic for composite optimization problems." Chaos, Solitons & Fractals 199 (October 2025): 116792. https://doi.org/10.1016/j.chaos.2025.116792.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Huang, Banghua, Yang Liu, Yun-Liang Jiang, and Jun Wang. "Two-timescale projection neural networks in collaborative neurodynamic approaches to global optimization and distributed optimization." Neural Networks 169 (January 2024): 83–91. http://dx.doi.org/10.1016/j.neunet.2023.10.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Demin, D. B. "THE ASSESSMENT OF REACTIONS OF POLYGRAPHIC PARAMETERS AT HRV-BIOFEEDBACK TRAINING IN ADOLESCENTS WITH DIFFERENT VARIANTS OF CARDIAC AUTONOMIC NERVOUS SYSTEM TONE." Annals of the Russian academy of medical sciences 67, no. 2 (2012): 11–15. http://dx.doi.org/10.15690/vramn.v67i2.117.

Der volle Inhalt der Quelle
Annotation:
There is examine a character of change of brain bioelectric activity and polygraphic indicators at sessions of biofeedback by heart rhythm variability parameters (HRV-biofeedback) in 15–17 years adolescents who have different variants of cardiac autonomic nervous system tone. It is taped, that adolescents with cardiac balanced tone have more intensive optimization of functional brain activity in comparison with adolescents who have cardiac sympathetic tone — increase on alpha-activity and theta-activity depression in electroencephalogram structure. There were optimization of neurodynamic proce
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Berga, David, and Xavier Otazu. "A Neurodynamic Model of Saliency Prediction in V1." Neural Computation 34, no. 2 (2022): 378–414. http://dx.doi.org/10.1162/neco_a_01464.

Der volle Inhalt der Quelle
Annotation:
Abstract Lateral connections in the primary visual cortex (V1) have long been hypothesized to be responsible for several visual processing mechanisms such as brightness induction, chromatic induction, visual discomfort, and bottom-up visual attention (also named saliency). Many computational models have been developed to independently predict these and other visual processes, but no computational model has been able to reproduce all of them simultaneously. In this work, we show that a biologically plausible computational model of lateral interactions of V1 is able to simultaneously predict sal
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Li, Xinqi, Jun Wang, and Sam Kwong. "A Discrete-Time Neurodynamic Approach to Sparsity-Constrained Nonnegative Matrix Factorization." Neural Computation 32, no. 8 (2020): 1531–62. http://dx.doi.org/10.1162/neco_a_01294.

Der volle Inhalt der Quelle
Annotation:
Sparsity is a desirable property in many nonnegative matrix factorization (NMF) applications. Although some level of sparseness of NMF solutions can be achieved by using regularization, the resulting sparsity depends highly on the regularization parameter to be valued in an ad hoc way. In this letter we formulate sparse NMF as a mixed-integer optimization problem with sparsity as binary constraints. A discrete-time projection neural network is developed for solving the formulated problem. Sufficient conditions for its stability and convergence are analytically characterized by using Lyapunov's
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Peng, Zhouhua, Jun Wang, and Dan Wang. "Distributed Maneuvering of Autonomous Surface Vehicles Based on Neurodynamic Optimization and Fuzzy Approximation." IEEE Transactions on Control Systems Technology 26, no. 3 (2018): 1083–90. http://dx.doi.org/10.1109/tcst.2017.2699167.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Le, Xinyi, Zheng Yan, and Juntong Xi. "A Collective Neurodynamic System for Distributed Optimization with Applications in Model Predictive Control." IEEE Transactions on Emerging Topics in Computational Intelligence 1, no. 4 (2017): 305–14. http://dx.doi.org/10.1109/tetci.2017.2716377.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Luan, Linhua, Xingnan Wen, and Sitian Qin. "Distributed neurodynamic approaches to nonsmooth optimization problems with inequality and set constraints." Complex & Intelligent Systems, May 30, 2022. http://dx.doi.org/10.1007/s40747-022-00770-1.

Der volle Inhalt der Quelle
Annotation:
AbstractIn this paper, neurodynamic approaches are proposed for solving nonsmooth distributed optimization problems under inequality and set constraints, that is to find the solution that minimizes the sum of local cost functions. A continuous-time neurodynamic approach is designed and its state solution exists globally and converges to an optimal solution of the corresponding distributed optimization problem. Then, a neurodynamic approach with event-triggered mechanism is considered for the purpose of saving communication costs, and then, the convergence and its Zeno-free property are proved.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!