Zeitschriftenartikel zum Thema „Neural scaffold“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Neural scaffold" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Sadeghi, Ali, Fatholah Moztarzadeh, Jamshid Aghazadeh Mohandesi, Claudia Grothe, Kirsten Haastert Talini, Ali Reza Zalli und Reza Jalili Khoshnoud. „In Vitro Assessment of Synthetic Nano Engineered Graft Designed for Further Clinical Study in Nerve Regeneration“. International Clinical Neuroscience Journal 5, Nr. 3 (30.09.2018): 86–91. http://dx.doi.org/10.15171/icnj.2018.17.
Der volle Inhalt der QuelleWang, Yuqing, Haoran Yu, Haifeng Liu und Yubo Fan. „Double coating of graphene oxide–polypyrrole on silk fibroin scaffolds for neural tissue engineering“. Journal of Bioactive and Compatible Polymers 35, Nr. 3 (Mai 2020): 216–27. http://dx.doi.org/10.1177/0883911520913905.
Der volle Inhalt der QuelleGhorbani, Sadegh, Taki Tiraihi und Masoud Soleimani. „Differentiation of mesenchymal stem cells into neuron-like cells using composite 3D scaffold combined with valproic acid induction“. Journal of Biomaterials Applications 32, Nr. 6 (23.11.2017): 702–15. http://dx.doi.org/10.1177/0885328217741903.
Der volle Inhalt der QuelleQiu, Chen, Yuan Sun, Jinying Li, Yuchen Xu, Jiayi Zhou, Cong Qiu, Shaomin Zhang, Yong He und Luyang Yu. „Therapeutic Effect of Biomimetic Scaffold Loaded with Human Amniotic Epithelial Cell-Derived Neural-like Cells for Spinal Cord Injury“. Bioengineering 9, Nr. 10 (09.10.2022): 535. http://dx.doi.org/10.3390/bioengineering9100535.
Der volle Inhalt der QuelleNune, Manasa, Uma Maheswari Krishnan und Swaminathan Sethuraman. „Decoration of PLGA electrospun nanofibers with designer self-assembling peptides: a “Nano-on-Nano” concept“. RSC Advances 5, Nr. 108 (2015): 88748–57. http://dx.doi.org/10.1039/c5ra13576a.
Der volle Inhalt der QuelleZhou, Ling, Jiangyi Tu, Guangbi Fang, Li Deng, Xiaoqing Gao, Kan Guo, Jiming Kong, Jing Lv, Weikang Guan und Chaoxian Yang. „Combining PLGA Scaffold and MSCs for Brain Tissue Engineering: A Potential Tool for Treatment of Brain Injury“. Stem Cells International 2018 (05.08.2018): 1–8. http://dx.doi.org/10.1155/2018/5024175.
Der volle Inhalt der QuelleRahimi-Sherbaf, Fatemeh, Samad Nadri, Ali Rahmani und Atousa Dabiri Oskoei. „Placenta mesenchymal stem cells differentiation toward neuronal-like cells on nanofibrous scaffold“. BioImpacts 10, Nr. 2 (26.03.2020): 117–22. http://dx.doi.org/10.34172/bi.2020.14.
Der volle Inhalt der QuelleGelain, Fabrizio, Andrea Lomander, Angelo L. Vescovi und Shuguang Zhang. „Systematic Studies of a Self-Assembling Peptide Nanofiber Scaffold with Other Scaffolds“. Journal of Nanoscience and Nanotechnology 7, Nr. 2 (01.02.2007): 424–34. http://dx.doi.org/10.1166/jnn.2007.154.
Der volle Inhalt der QuelleLiu, Yuan Yuan, Zhen Zhong Han, Shu Hui Fang, Da Li Liu, Ying Liu und Qing Xi Hu. „Bone Scaffold Forming Filament Width Prediction of LDM Based on the Improved BP Neural Network“. Key Engineering Materials 568 (Juli 2013): 187–92. http://dx.doi.org/10.4028/www.scientific.net/kem.568.187.
Der volle Inhalt der QuelleWei, Chih-Chiang. „COLLAPSE WARNING SYSTEM USING LSTM NEURAL NETWORKS FOR CONSTRUCTION DISASTER PREVENTION IN EXTREME WIND WEATHER“. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 27, Nr. 4 (20.04.2021): 230–45. http://dx.doi.org/10.3846/jcem.2021.14649.
Der volle Inhalt der QuelleSoleimani, Maryam, Shohreh Mashayekhan, Hossein Baniasadi, Ahmad Ramazani und Mohamadhasan Ansarizadeh. „Design and fabrication of conductive nanofibrous scaffolds for neural tissue engineering: Process modeling via response surface methodology“. Journal of Biomaterials Applications 33, Nr. 5 (November 2018): 619–29. http://dx.doi.org/10.1177/0885328218808917.
Der volle Inhalt der QuelleAntonova, Olga Y., Olga Y. Kochetkova und Yuri M. Shlyapnikov. „ECM-Mimetic Nylon Nanofiber Scaffolds for Neurite Growth Guidance“. Nanomaterials 11, Nr. 2 (18.02.2021): 516. http://dx.doi.org/10.3390/nano11020516.
Der volle Inhalt der QuelleMammadov, Busra, Melike Sever, Mustafa O. Guler und Ayse B. Tekinay. „Neural differentiation on synthetic scaffold materials“. Biomaterials Science 1, Nr. 11 (2013): 1119. http://dx.doi.org/10.1039/c3bm60150a.
Der volle Inhalt der QuelleGao, Mingyong, Haiyin Tao, Tao Wang, Ailin Wei und Bin He. „Functionalized self-assembly polypeptide hydrogel scaffold applied in modulation of neural progenitor cell behavior“. Journal of Bioactive and Compatible Polymers 32, Nr. 1 (21.09.2016): 45–60. http://dx.doi.org/10.1177/0883911516653146.
Der volle Inhalt der QuelleZhao, Xinhao, Huiru Wang, Yunlong Zou, Weiwei Xue, Yang Zhuang, Rui Gu, He Shen und Jianwu Dai. „Optimized, visible light-induced crosslinkable hybrid gelatin/hyaluronic acid scaffold promotes complete spinal cord injury repair“. Biomedical Materials 17, Nr. 2 (25.01.2022): 024104. http://dx.doi.org/10.1088/1748-605x/ac45ec.
Der volle Inhalt der QuelleKondiah, Pariksha Jolene, Pierre P. D. Kondiah, Yahya E. Choonara, Thashree Marimuthu und Viness Pillay. „A 3D Bioprinted Pseudo-Bone Drug Delivery Scaffold for Bone Tissue Engineering“. Pharmaceutics 12, Nr. 2 (17.02.2020): 166. http://dx.doi.org/10.3390/pharmaceutics12020166.
Der volle Inhalt der QuelleZaszczynska, Angelika, Paweł Sajkiewicz und Arkadiusz Gradys. „Piezoelectric Scaffolds as Smart Materials for Neural Tissue Engineering“. Polymers 12, Nr. 1 (08.01.2020): 161. http://dx.doi.org/10.3390/polym12010161.
Der volle Inhalt der QuelleSirkkunan, Devindraan, Belinda Pingguan-Murphy und Farina Muhamad. „Directing Axonal Growth: A Review on the Fabrication of Fibrous Scaffolds That Promotes the Orientation of Axons“. Gels 8, Nr. 1 (28.12.2021): 25. http://dx.doi.org/10.3390/gels8010025.
Der volle Inhalt der QuelleOsorio-Londoño, Diana María, José Rafael Godínez-Fernández, Ma Cristina Acosta-García, Juan Morales-Corona, Roberto Olayo-González und Axayácatl Morales-Guadarrama. „Pyrrole Plasma Polymer-Coated Electrospun Scaffolds for Neural Tissue Engineering“. Polymers 13, Nr. 22 (10.11.2021): 3876. http://dx.doi.org/10.3390/polym13223876.
Der volle Inhalt der QuelleZoughaib, Mohamed, Kenana Dayob, Svetlana Avdokushina, Marat I. Kamalov, Diana V. Salakhieva, Irina N. Savina, Igor A. Lavrov und Timur I. Abdullin. „Oligo (Poly(Ethylene Glycol)Fumarate)-Based Multicomponent Cryogels for Neural Tissue Replacement“. Gels 9, Nr. 2 (25.01.2023): 105. http://dx.doi.org/10.3390/gels9020105.
Der volle Inhalt der QuelleAgbay, Andrew, John M. Edgar, Meghan Robinson, Tara Styan, Krista Wilson, Julian Schroll, Junghyuk Ko, Nima Khadem Mohtaram, Martin Byung-Guk Jun und Stephanie M. Willerth. „Biomaterial Strategies for Delivering Stem Cells as a Treatment for Spinal Cord Injury“. Cells Tissues Organs 202, Nr. 1-2 (2016): 42–51. http://dx.doi.org/10.1159/000446474.
Der volle Inhalt der QuelleMahmood, Asim, Hongtao Wu, Changsheng Qu, Selina Mahmood, Ye Xiong, David L. Kaplan und Michael Chopp. „Suppression of neurocan and enhancement of axonal density in rats after treatment of traumatic brain injury with scaffolds impregnated with bone marrow stromal cells“. Journal of Neurosurgery 120, Nr. 5 (Mai 2014): 1147–55. http://dx.doi.org/10.3171/2013.12.jns131362.
Der volle Inhalt der QuelleAltun, Esra, Mehmet O. Aydogdu, Sine O. Togay, Ahmet Z. Sengil, Nazmi Ekren, Merve E. Haskoylu, Ebru T. Oner et al. „Bioinspired scaffold induced regeneration of neural tissue“. European Polymer Journal 114 (Mai 2019): 98–108. http://dx.doi.org/10.1016/j.eurpolymj.2019.02.008.
Der volle Inhalt der QuelleCeyssens, Frederik, Kris van Kuyck, Greetje Vande Velde, Marleen Welkenhuysen, Linda Stappers, Bart Nuttin und Robert Puers. „Resorbable scaffold based chronic neural electrode arrays“. Biomedical Microdevices 15, Nr. 3 (16.02.2013): 481–93. http://dx.doi.org/10.1007/s10544-013-9748-x.
Der volle Inhalt der QuelleWong, Darice Y., Paul H. Krebsbach und Scott J. Hollister. „Brain cortex regeneration affected by scaffold architectures“. Journal of Neurosurgery 109, Nr. 4 (Oktober 2008): 715–22. http://dx.doi.org/10.3171/jns/2008/109/10/0715.
Der volle Inhalt der QuelleCassimjee, Henna, Pradeep Kumar, Philemon Ubanako und Yahya E. Choonara. „Genipin-Crosslinked, Proteosaccharide Scaffolds for Potential Neural Tissue Engineering Applications“. Pharmaceutics 14, Nr. 2 (18.02.2022): 441. http://dx.doi.org/10.3390/pharmaceutics14020441.
Der volle Inhalt der QuelleGerschenfeld, Gaspard, Rachida Aid, Teresa Simon-Yarza, Soraya Lanouar, Patrick Charnay, Didier Letourneur und Piotr Topilko. „Tuning Physicochemical Properties of a Macroporous Polysaccharide-Based Scaffold for 3D Neuronal Culture“. International Journal of Molecular Sciences 22, Nr. 23 (25.11.2021): 12726. http://dx.doi.org/10.3390/ijms222312726.
Der volle Inhalt der QuelleYeh, Jue-Zong, Ding-Han Wang, Juin-Hong Cherng, Yi-Wen Wang, Gang-Yi Fan, Nien-Hsien Liou, Jiang-Chuan Liu und Chung-Hsing Chou. „A Collagen-Based Scaffold for Promoting Neural Plasticity in a Rat Model of Spinal Cord Injury“. Polymers 12, Nr. 10 (29.09.2020): 2245. http://dx.doi.org/10.3390/polym12102245.
Der volle Inhalt der QuelleGu, Ben Jiahe, Dennis Jgamadze, Guoming (Tony) Man und Han-Chiao Isaac Chen. „4418 Optimization and Validation of a Silk Scaffold-Based Neural Tissue Construct“. Journal of Clinical and Translational Science 4, s1 (Juni 2020): 13–14. http://dx.doi.org/10.1017/cts.2020.85.
Der volle Inhalt der QuelleLiu, Xi, Shumeng Bai und Huijing Zhao. „Silk Fibroin-Based Scaffold for Neural Tissue Engineering“. Journal of Biomaterials and Tissue Engineering 4, Nr. 12 (01.12.2014): 1012–18. http://dx.doi.org/10.1166/jbt.2014.1254.
Der volle Inhalt der QuelleKing, Jasmine L., Panita Maturavongsadit, Shawn D. Hingtgen und S. Rahima Benhabbour. „Injectable pH Thermo-Responsive Hydrogel Scaffold for Tumoricidal Neural Stem Cell Therapy for Glioblastoma Multiforme“. Pharmaceutics 14, Nr. 10 (20.10.2022): 2243. http://dx.doi.org/10.3390/pharmaceutics14102243.
Der volle Inhalt der QuelleWang, Shuping, Changkai Sun, Shui Guan, Wenfang Li, Jianqiang Xu, Dan Ge, Meiling Zhuang, Tianqing Liu und Xuehu Ma. „Chitosan/gelatin porous scaffolds assembled with conductive poly(3,4-ethylenedioxythiophene) nanoparticles for neural tissue engineering“. Journal of Materials Chemistry B 5, Nr. 24 (2017): 4774–88. http://dx.doi.org/10.1039/c7tb00608j.
Der volle Inhalt der QuelleChi, Jiayu, Mingyue Wang, Jialin Chen, Lizhi Hu, Zhixuan Chen, Ludvig J. Backman und Wei Zhang. „Topographic Orientation of Scaffolds for Tissue Regeneration: Recent Advances in Biomaterial Design and Applications“. Biomimetics 7, Nr. 3 (12.09.2022): 131. http://dx.doi.org/10.3390/biomimetics7030131.
Der volle Inhalt der QuelleTonellato, Marika, Monica Piccione, Matteo Gasparotto, Pietro Bellet, Lucia Tibaudo, Nicola Vicentini, Elisabetta Bergantino et al. „Commitment of Autologous Human Multipotent Stem Cells on Biomimetic Poly-L-Lactic Acid-Based Scaffolds Is Strongly Influenced by Structure and Concentration of Carbon Nanomaterial“. Nanomaterials 10, Nr. 3 (27.02.2020): 415. http://dx.doi.org/10.3390/nano10030415.
Der volle Inhalt der QuelleWang, Xiumei, Jin He, Ying Wang und Fu-Zhai Cui. „Hyaluronic acid-based scaffold for central neural tissue engineering“. Interface Focus 2, Nr. 3 (21.03.2012): 278–91. http://dx.doi.org/10.1098/rsfs.2012.0016.
Der volle Inhalt der QuelleFinch, L., S. Harris, C. Adams, J. Sen, J. Tickle, N. Tzerakis und DM Chari. „WP1-22 DuraGen™ as an encapsulating material for neural stem cell delivery“. Journal of Neurology, Neurosurgery & Psychiatry 90, Nr. 3 (14.02.2019): e7.2-e7. http://dx.doi.org/10.1136/jnnp-2019-abn.22.
Der volle Inhalt der QuelleWang, Yifan, Sunčica Čanić, Martina Bukač, Charles Blaha und Shuvo Roy. „Mathematical and Computational Modeling of Poroelastic Cell Scaffolds Used in the Design of an Implantable Bioartificial Pancreas“. Fluids 7, Nr. 7 (01.07.2022): 222. http://dx.doi.org/10.3390/fluids7070222.
Der volle Inhalt der QuelleBorhani-Haghighi, Maryam, Shahnaz Razavi und Zahra Khosravizadeh. „The Application of Alginate Scaffold in Neural Tissue Engineering“. Neuroscience Journal of Shefaye Khatam 5, Nr. 4 (01.10.2017): 76–86. http://dx.doi.org/10.18869/acadpub.shefa.5.4.76.
Der volle Inhalt der QuelleAlhosseini, Sanaz Naghavi, Fathollah Moztarzadeh und Akbar Karkhaneh. „Genipin-cross-linked poly(vinyl alcohol) for neural scaffold“. Bioinspired, Biomimetic and Nanobiomaterials 6, Nr. 4 (Dezember 2017): 191–98. http://dx.doi.org/10.1680/jbibn.16.00043.
Der volle Inhalt der QuelleWang, Yuting, Yanping Zhang, Zhongyang Zhang, Yingchun Su, Zegao Wang, Mingdong Dong und Menglin Chen. „An injectable high-conductive bimaterial scaffold for neural stimulation“. Colloids and Surfaces B: Biointerfaces 195 (November 2020): 111210. http://dx.doi.org/10.1016/j.colsurfb.2020.111210.
Der volle Inhalt der QuelleLayrolle, Pierre, Pierre Payoux und Stéphane Chavanas. „Message in a Scaffold: Natural Biomaterials for Three-Dimensional (3D) Bioprinting of Human Brain Organoids“. Biomolecules 13, Nr. 1 (22.12.2022): 25. http://dx.doi.org/10.3390/biom13010025.
Der volle Inhalt der QuelleBian, Yuemin, und Xiang-Qun Xie. „Artificial Intelligent Deep Learning Molecular Generative Modeling of Scaffold-Focused and Cannabinoid CB2 Target-Specific Small-Molecule Sublibraries“. Cells 11, Nr. 5 (07.03.2022): 915. http://dx.doi.org/10.3390/cells11050915.
Der volle Inhalt der QuelleShendi, Dalia, Ana Dede, Yuan Yin, Chaoming Wang, Chandra Valmikinathan und Anjana Jain. „Tunable, bioactive protein conjugated hyaluronic acid hydrogel for neural engineering applications“. Journal of Materials Chemistry B 4, Nr. 16 (2016): 2803–18. http://dx.doi.org/10.1039/c5tb02235e.
Der volle Inhalt der QuelleNaghashzargar, Elham, Dariush Semnani und Saeed Karbasi. „Improving the Mechanical Properties of Wire-Rope Silk Scaffold by Artificial Neural Network in Tendon and Ligament Tissue Engineering“. Journal of Engineered Fibers and Fabrics 10, Nr. 3 (September 2015): 155892501501000. http://dx.doi.org/10.1177/155892501501000303.
Der volle Inhalt der QuelleGrossemy, Simon, Peggy P. Y. Chan und Pauline M. Doran. „Electrical stimulation of cell growth and neurogenesis using conductive and nonconductive microfibrous scaffolds“. Integrative Biology 11, Nr. 6 (01.06.2019): 264–79. http://dx.doi.org/10.1093/intbio/zyz022.
Der volle Inhalt der QuelleMungenast, Lena, Fabian Züger, Jasmin Selvi, Ana Bela Faia-Torres, Jürgen Rühe, Laura Suter-Dick und Maurizio R. Gullo. „Directional Submicrofiber Hydrogel Composite Scaffolds Supporting Neuron Differentiation and Enabling Neurite Alignment“. International Journal of Molecular Sciences 23, Nr. 19 (29.09.2022): 11525. http://dx.doi.org/10.3390/ijms231911525.
Der volle Inhalt der QuelleKim, Dong Hwan, Bo Young Kim, Dong Hyun Kim, Jin Hur und Chung-Hwan Baek. „Rabbit palatum-derived mesenchymal progenitor cells tri-lineage differentiation on 2D substrates and 3D printed constructs“. Journal of Applied Biomaterials & Functional Materials 17, Nr. 3 (Juli 2019): 228080001983452. http://dx.doi.org/10.1177/2280800019834520.
Der volle Inhalt der QuelleKim, Gyeong-Ji, Kwon-Jai Lee, Jeong-Woo Choi und Jeung Hee An. „Modified Industrial Three-Dimensional Polylactic Acid Scaffold Cell Chip Promotes the Proliferation and Differentiation of Human Neural Stem Cells“. International Journal of Molecular Sciences 23, Nr. 4 (17.02.2022): 2204. http://dx.doi.org/10.3390/ijms23042204.
Der volle Inhalt der QuelleChooi, Wai Hon, William Ong, Aoife Murray, Junquan Lin, Dean Nizetic und Sing Yian Chew. „Scaffold mediated gene knockdown for neuronal differentiation of human neural progenitor cells“. Biomaterials Science 6, Nr. 11 (2018): 3019–29. http://dx.doi.org/10.1039/c8bm01034j.
Der volle Inhalt der QuelleQin, Jingwen, Meizhi Wang, Tianyun Zhao, Xue Xiao, Xuejun Li, Jieping Yang, Lisha Yi, Andre M. Goffinet, Yibo Qu und Libing Zhou. „Early Forebrain Neurons and Scaffold Fibers in Human Embryos“. Cerebral Cortex 30, Nr. 3 (11.07.2019): 913–28. http://dx.doi.org/10.1093/cercor/bhz136.
Der volle Inhalt der Quelle