Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Neural fields equations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Neural fields equations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Neural fields equations"
Veltz, Romain, und Olivier Faugeras. „A Center Manifold Result for Delayed Neural Fields Equations“. SIAM Journal on Mathematical Analysis 45, Nr. 3 (Januar 2013): 1527–62. http://dx.doi.org/10.1137/110856162.
Der volle Inhalt der QuelleBelhe, Yash, Michaël Gharbi, Matthew Fisher, Iliyan Georgiev, Ravi Ramamoorthi und Tzu-Mao Li. „Discontinuity-Aware 2D Neural Fields“. ACM Transactions on Graphics 42, Nr. 6 (05.12.2023): 1–11. http://dx.doi.org/10.1145/3618379.
Der volle Inhalt der QuelleNicks, Rachel, Abigail Cocks, Daniele Avitabile, Alan Johnston und Stephen Coombes. „Understanding Sensory Induced Hallucinations: From Neural Fields to Amplitude Equations“. SIAM Journal on Applied Dynamical Systems 20, Nr. 4 (Januar 2021): 1683–714. http://dx.doi.org/10.1137/20m1366885.
Der volle Inhalt der QuelleVeltz, Romain, und Olivier Faugeras. „ERRATUM: A Center Manifold Result for Delayed Neural Fields Equations“. SIAM Journal on Mathematical Analysis 47, Nr. 2 (Januar 2015): 1665–70. http://dx.doi.org/10.1137/140962279.
Der volle Inhalt der QuelleBressloff, Paul C., und Zachary P. Kilpatrick. „Nonlinear Langevin Equations for Wandering Patterns in Stochastic Neural Fields“. SIAM Journal on Applied Dynamical Systems 14, Nr. 1 (Januar 2015): 305–34. http://dx.doi.org/10.1137/140990371.
Der volle Inhalt der QuelleScheinker, Alexander, und Reeju Pokharel. „Physics-constrained 3D convolutional neural networks for electrodynamics“. APL Machine Learning 1, Nr. 2 (01.06.2023): 026109. http://dx.doi.org/10.1063/5.0132433.
Der volle Inhalt der QuelleSim, Fabio M., Eka Budiarto und Rusman Rusyadi. „Comparison and Analysis of Neural Solver Methods for Differential Equations in Physical Systems“. ELKHA 13, Nr. 2 (22.10.2021): 134. http://dx.doi.org/10.26418/elkha.v13i2.49097.
Der volle Inhalt der QuelleITOH, MAKOTO, und LEON O. CHUA. „IMAGE PROCESSING AND SELF-ORGANIZING CNN“. International Journal of Bifurcation and Chaos 15, Nr. 09 (September 2005): 2939–58. http://dx.doi.org/10.1142/s0218127405013794.
Der volle Inhalt der QuelleWennekers, Thomas. „Dynamic Approximation of Spatiotemporal Receptive Fields in Nonlinear Neural Field Models“. Neural Computation 14, Nr. 8 (01.08.2002): 1801–25. http://dx.doi.org/10.1162/089976602760128027.
Der volle Inhalt der QuelleMentzer, Katherine L., und J. Luc Peterson. „Neural network surrogate models for equations of state“. Physics of Plasmas 30, Nr. 3 (März 2023): 032704. http://dx.doi.org/10.1063/5.0126708.
Der volle Inhalt der QuelleDissertationen zum Thema "Neural fields equations"
Ueda, Hiroyuki. „Studies on low-field functional MRI to detect tiny neural magnetic fields“. Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263666.
Der volle Inhalt der Quelle京都大学
新制・課程博士
博士(工学)
甲第23205号
工博第4849号
京都大学大学院工学研究科電気工学専攻
(主査)教授 小林 哲生, 教授 松尾 哲司, 特定教授 中村 武恒
学位規則第4条第1項該当
Doctor of Philosophy (Engineering)
Kyoto University
DFAM
Faye, Grégory. „Symmetry breaking and pattern formation in some neural field equations“. Nice, 2012. http://www.theses.fr/2012NICE4017.
Der volle Inhalt der QuelleThe aim of this Thesis is to give a deeper understanding of pattern formation in neural field equations with symmetry, and to understand the significance of these symmetries in modelling the visual cortex. Neural fields equations are mesoscopic models that describe the spatio-temporal activity of populations of neurons. They were introduced in the 1970s and are often called the Wilson-Cowan-Amari equations in reference to their authors. From a mathematical point of view, neural fields equations are integro-differential equations set on domains particular to the modelled anatomical / functional properties. The first part of the Thesis is an introduction to mesoscopic modelling of the visual cortex and presents a model of the processing of image edges and textures. The second part is dedicated to the study of spatially periodic solutions of neural field equations, in different geometries, with applications to visual hallucination patterns. The results developed are general enough to be applied to other pattern formation problems. Finally, the last part is centred on the study of localized solutions of neural field equations set on unbounded domains
ALMEIDA, Arthur Santos de. „Algumas propriedades de equações diferenciais em espaços de Banach e aplicações de campos neurais“. Universidade Federal de Campina Grande, 2015. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1404.
Der volle Inhalt der QuelleMade available in DSpace on 2018-08-10T17:51:03Z (GMT). No. of bitstreams: 1 BRUNO ARTHUR SANTOS DE ALMEIDA - DISSERTAÇÃO PPGMAT 2015..pdf: 938463 bytes, checksum: ad040a3bd6379e6ea801856f1925dcca (MD5) Previous issue date: 2015-08
Capes
Para ler o resumo deste trabalho recomendamos o download do arquivo, uma vez que o mesmo possui fórmulas e caracteres matemáticos que não foram possíveis trascreve-los aqui.
To read the summary of this work we recommend downloading the file, since it has formulas and mathematical characters that were not possible to transcribe them here.
Wang, Wei 1974. „On solutions of advanced-retarded travelling wave equations arising in a neural field theory“. Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98515.
Der volle Inhalt der QuelleKeywords. Neuronal network; firing rate function; mixed-type functional differential equations; delays; travelling wave solutions
Tamekue, Cyprien. „Controllability, Visual Illusions and Perception“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST105.
Der volle Inhalt der QuelleThis thesis explores two distinct control theory applications in different scientific domains: physics and neuroscience. The first application focuses on the null controllability of the parabolic, spherical Baouendi-Grushin equation. In contrast, the second application involves the mathematical description of the MacKay-type visual illusions, focusing on the MacKay effect and Billock and Tsou's psychophysical experiments by controlling the one-layer Amari-type neural fields equation. Additionally, intending to study input-to-state stability and robust stabilization, the thesis investigates the existence of equilibrium in a multi-layer neural fields population model of Wilson-Cowan, specifically when the sensory input is a proportional feedback acting only on the system's state of the populations of excitatory neurons.In the first part, we investigate the null controllability properties of the parabolic equation associated with the Baouendi-Grushin operator defined by the canonical almost-Riemannian structure on the 2-dimensional sphere. It presents a degeneracy at the equator of the sphere. We provide some null controllability properties of this equation to this curved setting, which generalize that of the parabolic Baouendi-Grushin equation defined on the plane.Regarding neuroscience, initially, the focus lies on the description of visual illusions for which the tools of bifurcation theory and even multiscale analysis appear unsuitable. In our study, we use the neural fields equation of Amari-type in which the sensory input is interpreted as a cortical representation of the visual stimulus used in each experiment. It contains a localised distributed control function that models the stimulus's specificity, e.g., the redundant information in the centre of MacKay's funnel pattern (``MacKay rays'') or the fact that visual stimuli in Billock and Tsou's experiments are localized in the visual field.Always within the framework of neurosciences, we investigate the existence of equilibrium in a multi-layers neural fields population model of Wilson-Cowan when the sensory input is a proportional feedback that acts only on the system's state of the population of excitatory neurons. There, we provide a mild condition on the response functions under which such an equilibrium exists. The interest of this work lies in its application in studying the disruption of pathological brain oscillations associated with Parkinson's disease when stimulating and measuring only the population of excitatory neurons
SILVA, Michel Barros. „Comportamento Assintótico para Equação de Campos Neurais“. Universidade Federal de Campina Grande, 2014. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1395.
Der volle Inhalt der QuelleMade available in DSpace on 2018-08-09T17:18:23Z (GMT). No. of bitstreams: 1 MICHEL BARROS SILVA - DISSERTAÇÃO PPGMAT 2014..pdf: 335576 bytes, checksum: f2ee6b6d68cdefa6c32e300154d28756 (MD5) Previous issue date: 2014-02
Capes
Para ler o reumo deste trabalho recomendamos o download do arquivo, pois o mesmo possui fórmulas e caracteres matemáticos que não foram possíveis transcreve-los.
To read the progress of this work we recommend downloading the file, as it has formulas and mathematical characters that could not be transcribed.
Vellmer, Sebastian. „Applications of the Fokker-Planck Equation in Computational and Cognitive Neuroscience“. Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21597.
Der volle Inhalt der QuelleThis thesis is concerned with the calculation of statistics, in particular the power spectra, of point processes generated by stochastic multidimensional integrate-and-fire (IF) neurons, networks of IF neurons and decision-making models from the corresponding Fokker-Planck equations. In the brain, information is encoded by sequences of action potentials. In studies that focus on spike timing, IF neurons that drastically simplify the spike generation have become the standard model. One-dimensional IF neurons do not suffice to accurately model neural dynamics, however, the extension towards multiple dimensions yields realistic behavior at the price of growing complexity. The first part of this work develops a theory of spike-train power spectra for stochastic, multidimensional IF neurons. From the Fokker-Planck equation, a set of partial differential equations is derived that describes the stationary probability density, the firing rate and the spike-train power spectrum. In the second part of this work, a mean-field theory of large and sparsely connected homogeneous networks of spiking neurons is developed that takes into account the self-consistent temporal correlations of spike trains. Neural input is approximated by colored Gaussian noise generated by a multidimensional Ornstein-Uhlenbeck process of which the coefficients are initially unknown but determined by the self-consistency condition and define the solution of the theory. To explore heterogeneous networks, an iterative scheme is extended to determine the distribution of spectra. In the third part, the Fokker-Planck equation is applied to calculate the statistics of sequences of binary decisions from diffusion-decision models (DDM). For the analytically tractable DDM, the statistics are calculated from the corresponding Fokker-Planck equation. To determine the statistics for nonlinear models, the threshold-integration method is generalized.
Daya, Bassam. „Résolution numérique des équations du champ neural : étude de la coordination du mouvement par des modèles mathématiques du cervelet“. Angers, 1996. http://www.theses.fr/1996ANGE0013.
Der volle Inhalt der QuelleQuininao, Cristobal. „Mathematical modeling in neuroscience : collective behavior of neuronal networks & the role of local homeoproteins diffusion in morphogenesis“. Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066152/document.
Der volle Inhalt der QuelleThis work is devoted to the study of mathematical questions arising from the modeling of biological systems combining analytic and probabilistic tools. In the first part, we are interested in the derivation of the mean-field equations related to some neuronal networks, and in the study of the convergence to the equilibria of the solutions to the limit equations. In Chapter 2, we use the coupling method to prove the chaos propagation for a neuronal network with delays and random architecture. In Chapter 3, we consider a kinetic FitzHugh-Nagumo equation. We analyze the existence of solutions and prove the nonlinear exponential convergence in the weak connectivity regime. In the second part, we study the role of homeoproteins (HPs) on the robustness of boundaries of functional areas. In Chapter 4, we propose a general model for neuronal development. We prove that in the absence of diffusion, the HPs are expressed on irregular areas. But in presence of diffusion, even arbitrarily small, well defined boundaries emerge. In Chapter 5, we consider the general model in the one dimensional case and prove the existence of monotonic stationary solutions defining a unique intersection point for any arbitrarily small diffusion coefficient. Finally, in the third part, we study a subcritical Keller-Segel equation. We show the chaos propagation without any restriction on the force kernel. Eventually, we demonstrate that the propagation of chaos holds in the entropic sense
Костів, Б. В. „Удосконалення безкоштовного визначення струмів в стінках підземних трубопроводів для контролю їх ізоляційного покриття“. Thesis, Івано-Франківський національний технічний університет нафти і газу, 2010. http://elar.nung.edu.ua/handle/123456789/1974.
Der volle Inhalt der QuelleУ дисертації розроблено спосіб безконтактного визначення струму в стінках одного підземного трубопроводу на основі однократного вимірювання напруженостей п’ятьма магнітними антенами, що знаходяться в двох блоках, без попередньої орієнтації бази вимірювальної системи в перпендикулярній до осі трубопроводу площині. Розроблено спосіб автоматичного профілювання горизонтальної складової напруженості магнітного поля при проходженні із вимірювачьною системою над трубопроводами в перпендикулярному відносно їх осей напрямку. Запропоновано використання трьохшарової нейронної мережі для безконтактного визначення струму в стінках одного і двох підземних трубопроводів на основі даних профілю напруженостей магнітного поля над цими трубопроводами. Розроблено спосіб, в якому передбачено використання умовних рівнянь і отримання на їх базі нормальних рівнянь для безконтактного визначення струмів в стінках підземних трубопроводів при перпендикулярному проходженні над ними. Запропоновано структурну схему і виготовлено систему для безконтактного визначення струму в стінках підземних трубопроводів, яка реалізує всі запропоновані способи визначення цих струмів. Виконано метрологічний аналіз розробленої системи безконтактного визначення струмів в підземних трубопроводах, розроблена установка, яка дає змогу проводити експериментальні дослідження метрологічних характеристик розробленої системи безконтактного визначення струмів в підземних трубопроводах, а також подібних їй приладів і систем. Визначено метрологічні показники розробленої системи при безконтактному визначенні струмів у стінках контрольованих трубопроводів. Проведені лабораторні, польові і промислові випробування розробленої системи, які підтвердили її працездатність і можливість використання для контролю ізоляційного покриття підземних трубопроводів на основі заникання струму вздовж траси.
Bücher zum Thema "Neural fields equations"
Potthast, Roland, P. Beim Graben, Wright James und Stephen Coombes. Neural Fields: Theory and Applications. Springer Berlin / Heidelberg, 2016.
Den vollen Inhalt der Quelle findenPotthast, Roland, Wright James, Stephen Coombes und Peter beim Graben. Neural Fields: Theory and Applications. Springer London, Limited, 2014.
Den vollen Inhalt der Quelle findenWaves In Neural Media From Single Neurons To Neural Fields. Springer-Verlag New York Inc., 2013.
Den vollen Inhalt der Quelle findenWadman, Wytse J., und Fernando H. Lopes da Silva. Biophysical Aspects of EEG and MEG Generation. Herausgegeben von Donald L. Schomer und Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0004.
Der volle Inhalt der Quellevan Hinsbergh, Victor W. M. Physiology of blood vessels. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198755777.003.0002.
Der volle Inhalt der QuelleBuchteile zum Thema "Neural fields equations"
Helias, Moritz, und David Dahmen. „Functional Formulation of Stochastic Differential Equations“. In Statistical Field Theory for Neural Networks, 57–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46444-8_7.
Der volle Inhalt der QuelleHelias, Moritz, und David Dahmen. „Perturbation Theory for Stochastic Differential Equations“. In Statistical Field Theory for Neural Networks, 77–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46444-8_9.
Der volle Inhalt der QuelleAlecu, Lucian, und Hervé Frezza-Buet. „Application-Driven Parameter Tuning Methodology for Dynamic Neural Field Equations“. In Neural Information Processing, 135–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10677-4_15.
Der volle Inhalt der QuelleLa Camera, Giancarlo. „The Mean Field Approach for Populations of Spiking Neurons“. In Advances in Experimental Medicine and Biology, 125–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89439-9_6.
Der volle Inhalt der QuelleLa Camera, Giancarlo. „The Mean Field Approach for Populations of Spiking Neurons“. In Advances in Experimental Medicine and Biology, 125–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89439-9_6.
Der volle Inhalt der QuelleLima, Pedro M. „Numerical Investigation of Stochastic Neural Field Equations“. In Advances in Mechanics and Mathematics, 51–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02487-1_2.
Der volle Inhalt der QuelleTakabe, Hideaki. „Basic Properties of Plasma in Fluid Model“. In Springer Series in Plasma Science and Technology, 15–97. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-45473-8_2.
Der volle Inhalt der QuelleBurlakov, Evgenii, Vitaly Verkhlyutov, Ivan Malkov und Vadim Ushakov. „Assessment of Cortical Travelling Waves Parameters Using Radially Symmetric Solutions to Neural Field Equations with Microstructure“. In Advances in Neural Computation, Machine Learning, and Cognitive Research IV, 51–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60577-3_5.
Der volle Inhalt der QuelleTakabe, Hideaki. „Non-local Transport of Electrons in Plasmas“. In Springer Series in Plasma Science and Technology, 285–323. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-45473-8_6.
Der volle Inhalt der QuelleHaskell, Evan C., und Vehbi E. Paksoy. „Localized Activity States for Neuronal Field Equations of Feature Selectivity in a Stimulus Space with Toroidal Topology“. In Nonlinear and Complex Dynamics, 207–16. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0231-2_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Neural fields equations"
Yan, Chang, Shengjun Ju, Dilong Guo, Guowei Yang und Shuanbao Yao. „Inferring Unsteady Wake Flow Fields From Partial Data by Physics-Informed Neural Networks“. In ASME 2022 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fedsm2022-86945.
Der volle Inhalt der QuelleJo, Minju, Seungji Kook und Noseong Park. „Hawkes Process Based on Controlled Differential Equations“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/239.
Der volle Inhalt der QuelleZhang, Chi, Shihao Wang und Yu-Shu Wu. „A Physics-Informed Neural Network for Temporospatial Prediction of Hydraulic-Geomechanical Processes“. In SPE Reservoir Simulation Conference. SPE, 2023. http://dx.doi.org/10.2118/212202-ms.
Der volle Inhalt der QuellePost, Pascal, Benjamin Winhart und Francesca di Mare. „Investigation of Physics-Informed Neural Networks Based Solution Techniques for Internal Flows“. In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-80960.
Der volle Inhalt der QuelleWang, Jun, Kevin Chiu und Mark Fuge. „Learning to Abstract and Compose Mechanical Device Function and Behavior“. In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22714.
Der volle Inhalt der QuelleYe, Ximeng, Hongyu Li und Guoliang Qin. „Solving Flows Across Rotor and Stator Cascades With Local Neural Operator for Computational Fluid Dynamics“. In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-116339.
Der volle Inhalt der QuelleNagy, Allen L. „Individual differences in color discrimination and neural coding“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.my4.
Der volle Inhalt der QuelleAlhubail, Ali, Marwan Fahs, Francois Lehmann und Hussein Hoteit. „Physics-Informed Neural Networks for Modeling Flow in Heterogeneous Porous Media: A Decoupled Pressure-Velocity Approach“. In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-24362-ms.
Der volle Inhalt der QuelleCai, Shengze, Zhicheng Wang, Chryssostomos Chryssostomidis und George Em Karniadakis. „Heat Transfer Prediction With Unknown Thermal Boundary Conditions Using Physics-Informed Neural Networks“. In ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20159.
Der volle Inhalt der QuelleTaraghi, Pouya, Yong Li, Nader Yoosef-Ghodsi, Matt Fowler, Muntaseer Kainat und Samer Adeeb. „Response of Buried Pipelines Under Permanent Ground Movements: Physics-Informed Deep Neural Network Approach“. In ASME 2023 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/pvp2023-106201.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Neural fields equations"
Warrick, Arthur W., Gideon Oron, Mary M. Poulton, Rony Wallach und Alex Furman. Multi-Dimensional Infiltration and Distribution of Water of Different Qualities and Solutes Related Through Artificial Neural Networks. United States Department of Agriculture, Januar 2009. http://dx.doi.org/10.32747/2009.7695865.bard.
Der volle Inhalt der Quelle