Zeitschriftenartikel zum Thema „Network traffic detection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Network traffic detection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Praveena, Nutakki, Dr Ujwal A. Lanjewar und Chilakalapudi Meher Babu. „VIABLE NETWORK INTRUSION DETECTION ON WIRELESS ADHOC NETWORKS“. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 5, Nr. 1 (23.06.2013): 29–34. http://dx.doi.org/10.24297/ijct.v5i1.4383.
Der volle Inhalt der QuellePratomo, Baskoro A., Pete Burnap und George Theodorakopoulos. „BLATTA: Early Exploit Detection on Network Traffic with Recurrent Neural Networks“. Security and Communication Networks 2020 (04.08.2020): 1–15. http://dx.doi.org/10.1155/2020/8826038.
Der volle Inhalt der QuelleJiang, Ding De, Cheng Yao, Zheng Zheng Xu, Peng Zhang, Zhen Yuan und Wen Da Qin. „An Continuous Wavelet Transform-Based Detection Approach to Traffic Anomalies“. Applied Mechanics and Materials 130-134 (Oktober 2011): 2098–102. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.2098.
Der volle Inhalt der QuelleAnwer, M., S. M. Khan, M. U. Farooq und W. Waseemullah. „Attack Detection in IoT using Machine Learning“. Engineering, Technology & Applied Science Research 11, Nr. 3 (12.06.2021): 7273–78. http://dx.doi.org/10.48084/etasr.4202.
Der volle Inhalt der QuelleFotiadou, Konstantina, Terpsichori-Helen Velivassaki, Artemis Voulkidis, Dimitrios Skias, Sofia Tsekeridou und Theodore Zahariadis. „Network Traffic Anomaly Detection via Deep Learning“. Information 12, Nr. 5 (19.05.2021): 215. http://dx.doi.org/10.3390/info12050215.
Der volle Inhalt der QuelleLu, Jiazhong, Fengmao Lv, Zhongliu Zhuo, Xiaosong Zhang, Xiaolei Liu, Teng Hu und Wei Deng. „Integrating Traffics with Network Device Logs for Anomaly Detection“. Security and Communication Networks 2019 (13.06.2019): 1–10. http://dx.doi.org/10.1155/2019/5695021.
Der volle Inhalt der QuelleAli, Wasim Ahmed, Manasa K. N, Mohammed Aljunid, Malika Bendechache und P. Sandhya. „Review of Current Machine Learning Approaches for Anomaly Detection in Network Traffic“. Journal of Telecommunications and the Digital Economy 8, Nr. 4 (02.12.2020): 64–95. http://dx.doi.org/10.18080/jtde.v8n4.307.
Der volle Inhalt der QuelleBarrionuevo, Mercedes, Mariela Lopresti, Natalia Miranda und Fabiana Piccoli. „Secure Computer Network: Strategies and Challengers in Big Data Era“. Journal of Computer Science and Technology 18, Nr. 03 (12.12.2018): e28. http://dx.doi.org/10.24215/16666038.18.e28.
Der volle Inhalt der QuelleLalitha, K. V., und V. R. Josna. „Traffic Verification for Network Anomaly Detection in Sensor Networks“. Procedia Technology 24 (2016): 1400–1405. http://dx.doi.org/10.1016/j.protcy.2016.05.161.
Der volle Inhalt der QuelleMeimei Ding und Hui Tian. „PCA-based network Traffic anomaly detection“. Tsinghua Science and Technology 21, Nr. 5 (Oktober 2016): 500–509. http://dx.doi.org/10.1109/tst.2016.7590319.
Der volle Inhalt der QuelleTian, Hui, Jingtian Liu und Meimei Ding. „Promising techniques for anomaly detection on network traffic“. Computer Science and Information Systems 14, Nr. 3 (2017): 597–609. http://dx.doi.org/10.2298/csis170201018h.
Der volle Inhalt der QuelleNguyen, Hoanh. „Fast Traffic Sign Detection Approach Based on Lightweight Network and Multilayer Proposal Network“. Journal of Sensors 2020 (19.06.2020): 1–13. http://dx.doi.org/10.1155/2020/8844348.
Der volle Inhalt der QuelleTao, Xiaoling, Yang Peng, Feng Zhao, Peichao Zhao und Yong Wang. „A parallel algorithm for network traffic anomaly detection based on Isolation Forest“. International Journal of Distributed Sensor Networks 14, Nr. 11 (November 2018): 155014771881447. http://dx.doi.org/10.1177/1550147718814471.
Der volle Inhalt der QuelleGao, Minghui, Li Ma, Heng Liu, Zhijun Zhang, Zhiyan Ning und Jian Xu. „Malicious Network Traffic Detection Based on Deep Neural Networks and Association Analysis“. Sensors 20, Nr. 5 (06.03.2020): 1452. http://dx.doi.org/10.3390/s20051452.
Der volle Inhalt der QuelleAbuadlla, Yousef, Goran Kvascev, Slavko Gajin und Zoran Jovanovic. „Flow-based anomaly intrusion detection system using two neural network stages“. Computer Science and Information Systems 11, Nr. 2 (2014): 601–22. http://dx.doi.org/10.2298/csis130415035a.
Der volle Inhalt der QuelleZHONG, SHI, TAGHI M. KHOSHGOFTAAR und NAEEM SELIYA. „CLUSTERING-BASED NETWORK INTRUSION DETECTION“. International Journal of Reliability, Quality and Safety Engineering 14, Nr. 02 (April 2007): 169–87. http://dx.doi.org/10.1142/s0218539307002568.
Der volle Inhalt der QuelleYeh, Tien-Wen, Huei-Yung Lin und Chin-Chen Chang. „Traffic Light and Arrow Signal Recognition Based on a Unified Network“. Applied Sciences 11, Nr. 17 (31.08.2021): 8066. http://dx.doi.org/10.3390/app11178066.
Der volle Inhalt der QuelleHu, Qinwen, Muhammad Rizwan Asghar und Nevil Brownlee. „Effectiveness of Intrusion Detection Systems in High-speed Networks“. International Journal of Information, Communication Technology and Applications 4, Nr. 1 (18.03.2018): 1–10. http://dx.doi.org/10.17972/ijicta20184138.
Der volle Inhalt der QuelleMiller, Shane, Kevin Curran und Tom Lunney. „Detection of Virtual Private Network Traffic Using Machine Learning“. International Journal of Wireless Networks and Broadband Technologies 9, Nr. 2 (Juli 2020): 60–80. http://dx.doi.org/10.4018/ijwnbt.2020070104.
Der volle Inhalt der QuelleLi, Ming, Dezhi Han, Xinming Yin, Han Liu und Dun Li. „Design and Implementation of an Anomaly Network Traffic Detection Model Integrating Temporal and Spatial Features“. Security and Communication Networks 2021 (21.08.2021): 1–15. http://dx.doi.org/10.1155/2021/7045823.
Der volle Inhalt der QuelleDo, ChoXuan, Nguyen Quang Dam und Nguyen Tung Lam. „Optimization of network traffic anomaly detection using machine learning“. International Journal of Electrical and Computer Engineering (IJECE) 11, Nr. 3 (01.06.2021): 2360. http://dx.doi.org/10.11591/ijece.v11i3.pp2360-2370.
Der volle Inhalt der QuelleSafar, Noor Zuraidin Mohd, Noryusliza Abdullah, Hazalila Kamaludin, Suhaimi Abd Ishak und Mohd Rizal Mohd Isa. „Characterising and detection of botnet in P2P network for UDP protocol“. Indonesian Journal of Electrical Engineering and Computer Science 18, Nr. 3 (01.06.2020): 1584. http://dx.doi.org/10.11591/ijeecs.v18.i3.pp1584-1595.
Der volle Inhalt der QuelleNaseer, Sheraz, Rao Faizan Ali, P. D. D. Dominic und Yasir Saleem. „Learning Representations of Network Traffic Using Deep Neural Networks for Network Anomaly Detection: A Perspective towards Oil and Gas IT Infrastructures“. Symmetry 12, Nr. 11 (16.11.2020): 1882. http://dx.doi.org/10.3390/sym12111882.
Der volle Inhalt der QuelleZhu, Xia, Weidong Song und Lin Gao. „Regional Patch Detection of Road Traffic Network“. Journal of Sensors 2020 (02.06.2020): 1–6. http://dx.doi.org/10.1155/2020/6836091.
Der volle Inhalt der QuellePoonkavithai, K., und A. Keerthika. „Unreliable Road Network Traffic Detection and Prevention“. International Journal of u- and e-Service, Science and Technology 8, Nr. 5 (31.05.2015): 13–22. http://dx.doi.org/10.14257/ijunesst.2015.8.5.02.
Der volle Inhalt der QuelleThomas, Ciza. „Improving intrusion detection for imbalanced network traffic“. Security and Communication Networks 6, Nr. 3 (10.07.2012): 309–24. http://dx.doi.org/10.1002/sec.564.
Der volle Inhalt der QuelleParres-Peredo, Alvaro, Ivan Piza-Davila und Francisco Cervantes. „Unexpected-Behavior Detection Using TopK Rankings for Cybersecurity“. Applied Sciences 9, Nr. 20 (17.10.2019): 4381. http://dx.doi.org/10.3390/app9204381.
Der volle Inhalt der QuelleRajaboevich, Gulomov Sherzod, und Ganiev Abdukhalil Abdujalilovich. „Methods and models of protecting computer networks from un-wanted network traffic“. International Journal of Engineering & Technology 7, Nr. 4 (24.09.2018): 2541. http://dx.doi.org/10.14419/ijet.v7i4.14744.
Der volle Inhalt der QuelleNie, Laisen, Dingde Jiang und Zhihan Lv. „Modeling network traffic for traffic matrix estimation and anomaly detection based on Bayesian network in cloud computing networks“. Annals of Telecommunications 72, Nr. 5-6 (13.10.2016): 297–305. http://dx.doi.org/10.1007/s12243-016-0546-3.
Der volle Inhalt der QuelleAlgelal, Zahraa M., Eman Abdulaziz Ghani Aldhaher, Dalia N. Abdul-Wadood und Radhwan Hussein Abdulzhraa Al-Sagheer. „Botnet detection using ensemble classifiers of network flow“. International Journal of Electrical and Computer Engineering (IJECE) 10, Nr. 3 (01.06.2020): 2543. http://dx.doi.org/10.11591/ijece.v10i3.pp2543-2550.
Der volle Inhalt der QuelleDemertzis, Konstantinos, Konstantinos Tsiknas, Dimitrios Takezis, Charalabos Skianis und Lazaros Iliadis. „Darknet Traffic Big-Data Analysis and Network Management for Real-Time Automating of the Malicious Intent Detection Process by a Weight Agnostic Neural Networks Framework“. Electronics 10, Nr. 7 (25.03.2021): 781. http://dx.doi.org/10.3390/electronics10070781.
Der volle Inhalt der QuelleKim, Hyun-Koo, Kook-Yeol Yoo, Ju H. Park und Ho-Youl Jung. „Traffic Light Recognition Based on Binary Semantic Segmentation Network“. Sensors 19, Nr. 7 (10.04.2019): 1700. http://dx.doi.org/10.3390/s19071700.
Der volle Inhalt der QuellePatel, Darsh, Kathiravan Srinivasan, Chuan-Yu Chang, Takshi Gupta und Aman Kataria. „Network Anomaly Detection inside Consumer Networks—A Hybrid Approach“. Electronics 9, Nr. 6 (01.06.2020): 923. http://dx.doi.org/10.3390/electronics9060923.
Der volle Inhalt der QuelleDymora, Paweł, Miroslaw Mazurek und Sławomir Jaskółka. „VoIP Anomaly Detection - selected methods of statistical analysis“. Annales Universitatis Mariae Curie-Sklodowska, sectio AI – Informatica 16, Nr. 2 (22.12.2017): 14. http://dx.doi.org/10.17951/ai.2016.16.2.14.
Der volle Inhalt der QuelleQu, Yanyu, Fangling Pu, Jianguo Yin, Lingzi Liu und Xin Xu. „Dynamic Traffic Detection and Modeling for Beidou Satellite Networks“. Journal of Sensors 2020 (22.01.2020): 1–11. http://dx.doi.org/10.1155/2020/4575721.
Der volle Inhalt der QuelleLu, Liang Fu, Zheng-Hai Huang, Mohammed A. Ambusaidi und Kui-Xiang Gou. „A Large-Scale Network Data Analysis via Sparse and Low Rank Reconstruction“. Discrete Dynamics in Nature and Society 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/323764.
Der volle Inhalt der QuelleOujezsky, Vaclav, Tomas Horvath und Vladislav Skorpil. „Botnet C&C Traffic and Flow Lifespans Using Survival Analysis“. International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems 6, Nr. 1 (27.03.2017): 38. http://dx.doi.org/10.11601/ijates.v6i1.205.
Der volle Inhalt der QuelleWei, Songjie, Zedong Zhang, Shasha Li und Pengfei Jiang. „Calibrating Network Traffic with One-Dimensional Convolutional Neural Network with Autoencoder and Independent Recurrent Neural Network for Mobile Malware Detection“. Security and Communication Networks 2021 (26.02.2021): 1–10. http://dx.doi.org/10.1155/2021/6695858.
Der volle Inhalt der QuelleMažeika, Dalius, und Saulius Jasonis. „NETWORK TRAFFIC ANOMALIES DETECTING USING MAXIMUM ENTROPY METHOD / KOMPIUTERIŲ TINKLO SRAUTO ANOMALIJŲ ATPAŽINIMAS MAKSIMALIOS ENTROPIJOS METODU“. Mokslas – Lietuvos ateitis 6, Nr. 2 (24.04.2014): 162–67. http://dx.doi.org/10.3846/mla.2014.22.
Der volle Inhalt der QuelleDu, Chunlai, Shenghui Liu, Lei Si, Yanhui Guo und Tong Jin. „Using Object Detection Network for Malware Detection and Identification in Network Traffic Packets“. Computers, Materials & Continua 64, Nr. 3 (2020): 1785–96. http://dx.doi.org/10.32604/cmc.2020.010091.
Der volle Inhalt der QuelleLin, Tu-Liang, und Hong-Yi Chang. „Black Hole Traffic Anomaly Detections in Wireless Sensor Network“. International Journal of Grid and High Performance Computing 7, Nr. 1 (Januar 2015): 42–51. http://dx.doi.org/10.4018/ijghpc.2015010104.
Der volle Inhalt der QuelleZain ul Abideen, Muhammad, Shahzad Saleem und Madiha Ejaz. „VPN Traffic Detection in SSL-Protected Channel“. Security and Communication Networks 2019 (29.10.2019): 1–17. http://dx.doi.org/10.1155/2019/7924690.
Der volle Inhalt der QuelleFadlil, Abdul, Imam Riadi und Sukma Aji. „Review of Detection DDOS Attack Detection Using Naive Bayes Classifier for Network Forensics“. Bulletin of Electrical Engineering and Informatics 6, Nr. 2 (01.06.2017): 140–48. http://dx.doi.org/10.11591/eei.v6i2.605.
Der volle Inhalt der QuelleBai, Huiwen, Guangjie Liu, Weiwei Liu, Yingxue Quan und Shuhua Huang. „N-Gram, Semantic-Based Neural Network for Mobile Malware Network Traffic Detection“. Security and Communication Networks 2021 (23.04.2021): 1–17. http://dx.doi.org/10.1155/2021/5599556.
Der volle Inhalt der QuelleSaganowski, Łukasz, und Tomasz Andrysiak. „Snort IDS Hybrid ADS Preprocessor“. Image Processing & Communications 17, Nr. 4 (01.12.2012): 17–22. http://dx.doi.org/10.2478/v10248-012-0024-0.
Der volle Inhalt der QuelleJiang, Jun, und Symeon Papavassiliou. „Enhancing network traffic prediction and anomaly detection via statistical network traffic separation and combination strategies“. Computer Communications 29, Nr. 10 (Juni 2006): 1627–38. http://dx.doi.org/10.1016/j.comcom.2005.07.030.
Der volle Inhalt der QuelleClausen, Henry, Gudmund Grov und David Aspinall. „CBAM: A Contextual Model for Network Anomaly Detection“. Computers 10, Nr. 6 (11.06.2021): 79. http://dx.doi.org/10.3390/computers10060079.
Der volle Inhalt der QuelleDymora, Paweł, und Mirosław Mazurek. „Anomaly Detection in IoT Communication Network Based on Spectral Analysis and Hurst Exponent“. Applied Sciences 9, Nr. 24 (06.12.2019): 5319. http://dx.doi.org/10.3390/app9245319.
Der volle Inhalt der QuelleWu, Weiwei, Haoyu Zhang, Shengrun Zhang und Frank Witlox. „Community Detection in Airline Networks: An Empirical Analysis of American vs. Southwest Airlines“. Journal of Advanced Transportation 2019 (31.12.2019): 1–11. http://dx.doi.org/10.1155/2019/3032015.
Der volle Inhalt der QuelleDamasevicius, Robertas, Algimantas Venckauskas, Sarunas Grigaliunas, Jevgenijus Toldinas, Nerijus Morkevicius, Tautvydas Aleliunas und Paulius Smuikys. „LITNET-2020: An Annotated Real-World Network Flow Dataset for Network Intrusion Detection“. Electronics 9, Nr. 5 (13.05.2020): 800. http://dx.doi.org/10.3390/electronics9050800.
Der volle Inhalt der Quelle