Zeitschriftenartikel zum Thema „Network traffic detection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Network traffic detection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Chadrack, Irabaruta, and Dr Nyesheja Muhire Enan. "AI Powered Network Traffic Detection." Journal of Information and Technology 5, no. 2 (2025): 53–65. https://doi.org/10.70619/vol5iss2pp53-65.
Der volle Inhalt der QuelleKatuk, Norliza, Mohamad Sabri Sinal, Mohammed Gamal Ahmed Al-Samman, and Ijaz Ahmad. "An observational mechanism for detection of distributed denial-of-service attacks." International Journal of Advances in Applied Sciences 12, no. 2 (2023): 121. http://dx.doi.org/10.11591/ijaas.v12.i2.pp121-132.
Der volle Inhalt der QuelleNorliza, Katuk, Gamal Ahmed Al-Samman Mohammed, and Ahmad Ijaz. "An observational mechanism for detection of distributed denial-of-service attacks." International Journal of Advances in Applied Sciences (IJAAS) 12, no. 2 (2023): 132. https://doi.org/10.11591/ijaas.v12.i2.pp121-132.
Der volle Inhalt der QuelleJiang, Ding De, Cheng Yao, Zheng Zheng Xu, Peng Zhang, Zhen Yuan, and Wen Da Qin. "An Continuous Wavelet Transform-Based Detection Approach to Traffic Anomalies." Applied Mechanics and Materials 130-134 (October 2011): 2098–102. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.2098.
Der volle Inhalt der QuellePraveena, Nutakki, Dr Ujwal A. Lanjewar, and Chilakalapudi Meher Babu. "VIABLE NETWORK INTRUSION DETECTION ON WIRELESS ADHOC NETWORKS." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 5, no. 1 (2013): 29–34. http://dx.doi.org/10.24297/ijct.v5i1.4383.
Der volle Inhalt der QuelleFu, Xingbing, Xuewen Zhang, Jianfeng Fu, Bingjin Wu, and Jianwu Zhang. "Deep metric learning based approach for network intrusion detection." Journal of Physics: Conference Series 2504, no. 1 (2023): 012037. http://dx.doi.org/10.1088/1742-6596/2504/1/012037.
Der volle Inhalt der QuelleSon, Vu Ngoc. "Optimizing Network Anomaly Detection Based on Network Traffic." International Journal of Emerging Technology and Advanced Engineering 11, no. 11 (2021): 53–60. http://dx.doi.org/10.46338/ijetae1121_07.
Der volle Inhalt der QuellePratomo, Baskoro A., Pete Burnap, and George Theodorakopoulos. "BLATTA: Early Exploit Detection on Network Traffic with Recurrent Neural Networks." Security and Communication Networks 2020 (August 4, 2020): 1–15. http://dx.doi.org/10.1155/2020/8826038.
Der volle Inhalt der QuelleOh, Changhyeon, and Yuseok Ban. "Cross-Modality Interaction-Based Traffic Accident Classification." Applied Sciences 14, no. 5 (2024): 1958. http://dx.doi.org/10.3390/app14051958.
Der volle Inhalt der QuelleZhiwei Zhang, Zhiwei Zhang, Guiyuan Tang Zhiwei Zhang, Baoquan Ren Guiyuan Tang, Baoquan Ren Baoquan Ren, and Yulong Shen Baoquan Ren. "TV-ADS: A Smarter Attack Detection Scheme Based on Traffic Visualization of Wireless Network Event Cell." 網際網路技術學刊 25, no. 2 (2024): 301–11. http://dx.doi.org/10.53106/160792642024032502012.
Der volle Inhalt der QuelleLiu, Haitao, and Haifeng Wang. "Real-Time Anomaly Detection of Network Traffic Based on CNN." Symmetry 15, no. 6 (2023): 1205. http://dx.doi.org/10.3390/sym15061205.
Der volle Inhalt der QuelleMathan, Pinaki Shashishekhar. "Intrusion Detection Using Machine Learning Classification and Regression." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 03 (2025): 1–9. https://doi.org/10.55041/ijsrem42130.
Der volle Inhalt der QuelleMr., S.Manikandan. "The Potential of AI to Secure and Improve the Performance of Computer Networks." Journal of Scholastic Engineering Science and Management 2, no. 2 (2023): 42–50. https://doi.org/10.5281/zenodo.8255668.
Der volle Inhalt der QuelleAnwer, M., S. M. Khan, M. U. Farooq, and W. Waseemullah. "Attack Detection in IoT using Machine Learning." Engineering, Technology & Applied Science Research 11, no. 3 (2021): 7273–78. http://dx.doi.org/10.48084/etasr.4202.
Der volle Inhalt der QuelleLu, Kaibin. "Network Anomaly Traffic Analysis." Academic Journal of Science and Technology 10, no. 3 (2024): 65–68. http://dx.doi.org/10.54097/8as0rg31.
Der volle Inhalt der QuelleJournal, IJSREM. "Review of High Performance Network Intrusion Detection Engine." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 01 (2024): 1–13. http://dx.doi.org/10.55041/ijsrem28002.
Der volle Inhalt der QuelleBarrionuevo, Mercedes, Mariela Lopresti, Natalia Miranda, and Fabiana Piccoli. "Secure Computer Network: Strategies and Challengers in Big Data Era." Journal of Computer Science and Technology 18, no. 03 (2018): e28. http://dx.doi.org/10.24215/16666038.18.e28.
Der volle Inhalt der QuelleTao, Xiaoling, Yang Peng, Feng Zhao, Peichao Zhao, and Yong Wang. "A parallel algorithm for network traffic anomaly detection based on Isolation Forest." International Journal of Distributed Sensor Networks 14, no. 11 (2018): 155014771881447. http://dx.doi.org/10.1177/1550147718814471.
Der volle Inhalt der QuelleLi, Yimin, Dezhi Han, Mingming Cui, Fan Yuan, and Yachao Zhou. "RESNETCNN: An abnormal network traffic flows detection model." Computer Science and Information Systems, no. 00 (2023): 4. http://dx.doi.org/10.2298/csis221124004l.
Der volle Inhalt der QuellePreethi, M. Srilakshmi, Neeraj Kumar Uppu, and K. Naveen Kumar. "Unbalanced Traffic Intrusion Detection Using Advanced Deep Learning Techniques." International Research Journal of Innovations in Engineering and Technology 09, Special Issue (2025): 377–82. https://doi.org/10.47001/irjiet/2025.inspire61.
Der volle Inhalt der QuelleDuraj, Agnieszka. "Anomaly detection in network traffic." PRZEGLĄD ELEKTROTECHNICZNY 1, no. 12 (2022): 207–10. http://dx.doi.org/10.15199/48.2022.12.46.
Der volle Inhalt der QuelleAli, Wasim Ahmed, Manasa K. N, Mohammed Aljunid, Malika Bendechache, and P. Sandhya. "Review of Current Machine Learning Approaches for Anomaly Detection in Network Traffic." Journal of Telecommunications and the Digital Economy 8, no. 4 (2020): 64–95. http://dx.doi.org/10.18080/jtde.v8n4.307.
Der volle Inhalt der QuelleGao, Minghui, Li Ma, Heng Liu, Zhijun Zhang, Zhiyan Ning, and Jian Xu. "Malicious Network Traffic Detection Based on Deep Neural Networks and Association Analysis." Sensors 20, no. 5 (2020): 1452. http://dx.doi.org/10.3390/s20051452.
Der volle Inhalt der QuelleAlam, Shumon, Yasin Alam, Suxia Cui, and Cajetan Akujuobi. "Data-Driven Network Analysis for Anomaly Traffic Detection." Sensors 23, no. 19 (2023): 8174. http://dx.doi.org/10.3390/s23198174.
Der volle Inhalt der QuelleLiu, Dazhou, and Younghee Park. "Anonymous Traffic Detection Based on Feature Engineering and Reinforcement Learning." Sensors 24, no. 7 (2024): 2295. http://dx.doi.org/10.3390/s24072295.
Der volle Inhalt der QuelleLu, Jiazhong, Fengmao Lv, Zhongliu Zhuo, et al. "Integrating Traffics with Network Device Logs for Anomaly Detection." Security and Communication Networks 2019 (June 13, 2019): 1–10. http://dx.doi.org/10.1155/2019/5695021.
Der volle Inhalt der QuelleNguyen, Hoanh. "Fast Traffic Sign Detection Approach Based on Lightweight Network and Multilayer Proposal Network." Journal of Sensors 2020 (June 19, 2020): 1–13. http://dx.doi.org/10.1155/2020/8844348.
Der volle Inhalt der QuelleAlrayes, Fatma S., Mohammed Zakariah, Maha Driss, and Wadii Boulila. "Deep Neural Decision Forest (DNDF): A Novel Approach for Enhancing Intrusion Detection Systems in Network Traffic Analysis." Sensors 23, no. 20 (2023): 8362. http://dx.doi.org/10.3390/s23208362.
Der volle Inhalt der QuelleR., Ramkumar, Rahul R., and Gowtham Sri. "Anomaly Based Approach for Defending Denial of Service Attack in Web Traffic." COMPUSOFT: An International Journal of Advanced Computer Technology 04, no. 04 (2015): 1657–64. https://doi.org/10.5281/zenodo.14776346.
Der volle Inhalt der QuelleAlzyoud, Mazen, Najah Al-shanableh, Eman Nashnush, et al. "Enhanced Machine Learning Based Network Traffic Detection Model for IoT Network." International Journal of Interactive Mobile Technologies (iJIM) 18, no. 19 (2024): 182–98. http://dx.doi.org/10.3991/ijim.v18i19.50315.
Der volle Inhalt der QuelleLiu, Ying, Zhiqiang Wang, Shufang Pang, and Lei Ju. "Distributed Malicious Traffic Detection." Electronics 13, no. 23 (2024): 4720. http://dx.doi.org/10.3390/electronics13234720.
Der volle Inhalt der QuelleLi, Ming, Dezhi Han, Xinming Yin, Han Liu, and Dun Li. "Design and Implementation of an Anomaly Network Traffic Detection Model Integrating Temporal and Spatial Features." Security and Communication Networks 2021 (August 21, 2021): 1–15. http://dx.doi.org/10.1155/2021/7045823.
Der volle Inhalt der QuelleTao, Zhimin, Wei Quan, and Hua Wang. "Innovative Smart Road Stud Sensor Network Development for Real-Time Traffic Monitoring." Journal of Advanced Transportation 2022 (May 5, 2022): 1–9. http://dx.doi.org/10.1155/2022/8830276.
Der volle Inhalt der QuelleHan, Gang, Haohe Zhang, Zhongliang Zhang, Yan Ma, and Tiantian Yang. "AI-Based Malicious Encrypted Traffic Detection in 5G Data Collection and Secure Sharing." Electronics 14, no. 1 (2024): 51. https://doi.org/10.3390/electronics14010051.
Der volle Inhalt der QuelleAladaileh, Mohammad Adnan, Mohammed Anbar, Ahmed J. Hintaw, et al. "Effectiveness of an Entropy-Based Approach for Detecting Low- and High-Rate DDoS Attacks against the SDN Controller: Experimental Analysis." Applied Sciences 13, no. 2 (2023): 775. http://dx.doi.org/10.3390/app13020775.
Der volle Inhalt der QuelleFotiadou, Konstantina, Terpsichori-Helen Velivassaki, Artemis Voulkidis, Dimitrios Skias, Sofia Tsekeridou, and Theodore Zahariadis. "Network Traffic Anomaly Detection via Deep Learning." Information 12, no. 5 (2021): 215. http://dx.doi.org/10.3390/info12050215.
Der volle Inhalt der QuelleZhang, Hengyuan, Suyao Zhao, Ruiheng Liu, Wenlong Wang, Yixin Hong, and Runjiu Hu. "Automatic Traffic Anomaly Detection on the Road Network with Spatial-Temporal Graph Neural Network Representation Learning." Wireless Communications and Mobile Computing 2022 (June 20, 2022): 1–12. http://dx.doi.org/10.1155/2022/4222827.
Der volle Inhalt der QuelleH R, Bhargav. "Comparison of Machine Learning and Deep Learning algorithms for Detecting Intrusions in Network." International Journal for Research in Applied Science and Engineering Technology 10, no. 7 (2022): 1863–70. http://dx.doi.org/10.22214/ijraset.2022.45588.
Der volle Inhalt der QuelleBOBROVNIKOVA, K., and D. DENYSIUK. "METHOD FOR MALWARE DETECTION BASED ON THE NETWORK TRAFFIC ANALYSIS AND SOFTWARE BEHAVIOR IN COMPUTER SYSTEMS." Herald of Khmelnytskyi National University. Technical sciences 287, no. 4 (2020): 7–11. https://doi.org/10.31891/2307-5732-2020-287-4-7-11.
Der volle Inhalt der QuelleYeh, Tien-Wen, Huei-Yung Lin, and Chin-Chen Chang. "Traffic Light and Arrow Signal Recognition Based on a Unified Network." Applied Sciences 11, no. 17 (2021): 8066. http://dx.doi.org/10.3390/app11178066.
Der volle Inhalt der QuelleHaseeb-ur-rehman, Rana M. Abdul, Azana Hafizah Mohd Aman, Mohammad Kamrul Hasan, et al. "High-Speed Network DDoS Attack Detection: A Survey." Sensors 23, no. 15 (2023): 6850. http://dx.doi.org/10.3390/s23156850.
Der volle Inhalt der QuelleAlabsi, Basim Ahmad, Mohammed Anbar, and Shaza Dawood Ahmed Rihan. "Conditional Tabular Generative Adversarial Based Intrusion Detection System for Detecting Ddos and Dos Attacks on the Internet of Things Networks." Sensors 23, no. 12 (2023): 5644. http://dx.doi.org/10.3390/s23125644.
Der volle Inhalt der QuelleS, Dr Brindha, and Ms Dhamayanthi A. "Network Based Intrusion Detection using Convolutional Neural Network." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 03 (2025): 1–9. https://doi.org/10.55041/ijsrem42812.
Der volle Inhalt der QuelleTian, Hui, Jingtian Liu, and Meimei Ding. "Promising techniques for anomaly detection on network traffic." Computer Science and Information Systems 14, no. 3 (2017): 597–609. http://dx.doi.org/10.2298/csis170201018h.
Der volle Inhalt der QuelleDo Xuan, Cho, and Duc Duong. "Optimization of APT attack detection based on a model combining ATTENTION and deep learning." Journal of Intelligent & Fuzzy Systems 42, no. 4 (2022): 4135–51. http://dx.doi.org/10.3233/jifs-212570.
Der volle Inhalt der QuelleAbuadlla, Yousef, Goran Kvascev, Slavko Gajin, and Zoran Jovanovic. "Flow-based anomaly intrusion detection system using two neural network stages." Computer Science and Information Systems 11, no. 2 (2014): 601–22. http://dx.doi.org/10.2298/csis130415035a.
Der volle Inhalt der QuelleGloba, Larysa, Andrii Astrakhantsev, and Serhii Tsukanov. "Classification of network traffic using machine learning methods." Problemi telekomunìkacìj, no. 2(33) (December 25, 2023): 3–13. http://dx.doi.org/10.30837/pt.2023.2.01.
Der volle Inhalt der QuelleTatarnikova, Tatyana M., and Pavel Yu Bogdanov. "Metric characteristics of anomalous traffic detection in internet of things." T-Comm 16, no. 1 (2022): 15–21. http://dx.doi.org/10.36724/2072-8735-2022-16-1-15-21.
Der volle Inhalt der QuelleTeja Gollapalli, Venkata Surya, and Thanjaivadivel M. "DCN and TCN-Based Intelligent SDN Solutions for Cloud Networks: A Deep Learning Approach to Traffic Optimization." International Journal of Multidisciplinary Research and Growth Evaluation 1, no. 1 (2020): 161–67. https://doi.org/10.54660/.ijmrge.2020.1.1.161-167.
Der volle Inhalt der QuelleSon, Nguyen Hong, and Ha Thanh Dung. "A Lightweight Method for Detecting Cyber Attacks in High-traffic Large Networks based on Clustering Techniques." International journal of Computer Networks & Communications 15, no. 01 (2023): 35–51. http://dx.doi.org/10.5121/ijcnc.2023.15103.
Der volle Inhalt der Quelle