Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Network traffic detection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Network traffic detection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Network traffic detection"
Praveena, Nutakki, Dr Ujwal A. Lanjewar und Chilakalapudi Meher Babu. „VIABLE NETWORK INTRUSION DETECTION ON WIRELESS ADHOC NETWORKS“. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 5, Nr. 1 (23.06.2013): 29–34. http://dx.doi.org/10.24297/ijct.v5i1.4383.
Der volle Inhalt der QuellePratomo, Baskoro A., Pete Burnap und George Theodorakopoulos. „BLATTA: Early Exploit Detection on Network Traffic with Recurrent Neural Networks“. Security and Communication Networks 2020 (04.08.2020): 1–15. http://dx.doi.org/10.1155/2020/8826038.
Der volle Inhalt der QuelleJiang, Ding De, Cheng Yao, Zheng Zheng Xu, Peng Zhang, Zhen Yuan und Wen Da Qin. „An Continuous Wavelet Transform-Based Detection Approach to Traffic Anomalies“. Applied Mechanics and Materials 130-134 (Oktober 2011): 2098–102. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.2098.
Der volle Inhalt der QuelleAnwer, M., S. M. Khan, M. U. Farooq und W. Waseemullah. „Attack Detection in IoT using Machine Learning“. Engineering, Technology & Applied Science Research 11, Nr. 3 (12.06.2021): 7273–78. http://dx.doi.org/10.48084/etasr.4202.
Der volle Inhalt der QuelleFotiadou, Konstantina, Terpsichori-Helen Velivassaki, Artemis Voulkidis, Dimitrios Skias, Sofia Tsekeridou und Theodore Zahariadis. „Network Traffic Anomaly Detection via Deep Learning“. Information 12, Nr. 5 (19.05.2021): 215. http://dx.doi.org/10.3390/info12050215.
Der volle Inhalt der QuelleLu, Jiazhong, Fengmao Lv, Zhongliu Zhuo, Xiaosong Zhang, Xiaolei Liu, Teng Hu und Wei Deng. „Integrating Traffics with Network Device Logs for Anomaly Detection“. Security and Communication Networks 2019 (13.06.2019): 1–10. http://dx.doi.org/10.1155/2019/5695021.
Der volle Inhalt der QuelleAli, Wasim Ahmed, Manasa K. N, Mohammed Aljunid, Malika Bendechache und P. Sandhya. „Review of Current Machine Learning Approaches for Anomaly Detection in Network Traffic“. Journal of Telecommunications and the Digital Economy 8, Nr. 4 (02.12.2020): 64–95. http://dx.doi.org/10.18080/jtde.v8n4.307.
Der volle Inhalt der QuelleBarrionuevo, Mercedes, Mariela Lopresti, Natalia Miranda und Fabiana Piccoli. „Secure Computer Network: Strategies and Challengers in Big Data Era“. Journal of Computer Science and Technology 18, Nr. 03 (12.12.2018): e28. http://dx.doi.org/10.24215/16666038.18.e28.
Der volle Inhalt der QuelleLalitha, K. V., und V. R. Josna. „Traffic Verification for Network Anomaly Detection in Sensor Networks“. Procedia Technology 24 (2016): 1400–1405. http://dx.doi.org/10.1016/j.protcy.2016.05.161.
Der volle Inhalt der QuelleMeimei Ding und Hui Tian. „PCA-based network Traffic anomaly detection“. Tsinghua Science and Technology 21, Nr. 5 (Oktober 2016): 500–509. http://dx.doi.org/10.1109/tst.2016.7590319.
Der volle Inhalt der QuelleDissertationen zum Thema "Network traffic detection"
Brauckhoff, Daniela. „Network traffic anomaly detection and evaluation“. Aachen Shaker, 2010. http://d-nb.info/1001177746/04.
Der volle Inhalt der QuelleUdd, Robert. „Anomaly Detection in SCADA Network Traffic“. Thesis, Linköpings universitet, Programvara och system, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122680.
Der volle Inhalt der QuelleYellapragada, Ramani. „Probabilistic Model for Detecting Network Traffic Anomalies“. Ohio University / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1088538020.
Der volle Inhalt der QuelleZhang, Junjie. „Effective and scalable botnet detection in network traffic“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44837.
Der volle Inhalt der QuelleVu, Hong Linh. „DNS Traffic Analysis for Network-based Malware Detection“. Thesis, KTH, Kommunikationssystem, CoS, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93842.
Der volle Inhalt der QuelleBotnets betraktas som ett av de svåraste Internet-hoten idag. Botnets har använts vid många attacker mot multinationella organisationer och även nationella myndigheters och andra nationella Internet-tjänster. Allt eftersom mer effektiva detekterings - och skyddstekniker tas fram av säkerhetsforskare, har utvecklarna av botnets tagit fram nya tekniker för att undvika upptäckt. Därför är det inte förvånande att domännamnssystemet (Domain Name System, DNS) missbrukas av botnets för att undvika upptäckt, på grund av den viktiga roll domännamnssystemet har för Internets funktion - DNS ger en flexibel bindning mellan domännamn och IP-adresser. Domain-flux och fast-flux (även kallat IP-flux) är två relativt nya tekniker som används för att undvika spårning och svartlistning av IP-adresser av botnet-skyddsmekanismer genom att snabbt förändra bindningen mellan namn och IP-adresser som används av botnets. I denna rapport används passiv DNS-analys för att utveckla en anomali-baserad teknik för detektering av botnets som använder sig av domain-flux eller fast-flux. Tekniken baseras på skapandet av en uppslagnings-graf och en fel-graf från insamlad DNS-traffik och bryter ned dessa grafer i kluster som har stark korrelation mellan de ingående domänerna, maskinerna, och IP-adresserna. DNSrelaterade egenskaper extraheras för varje kluster och används som indata till en klassifficeringsmodul för identiffiering av domain-flux och fast-flux botnets i nätet. Utvärdering av metoden genom experiment på insamlade traffikspår visar att den föreslagna tekniken lyckas upptäcka domain-flux botnets i traffiken. Genom att fokusera på DNS-information kompletterar den föreslagna tekniken andra tekniker för detektering av botnets genom traffikanalys.
Gupta, Vikas. „File Detection in Network Traffic Using Approximate Matching“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for telematikk, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22696.
Der volle Inhalt der QuelleBrauckhoff, Daniela [Verfasser]. „Network Traffic Anomaly Detection and Evaluation / Daniela Brauckhoff“. Aachen : Shaker, 2010. http://d-nb.info/1122546610/34.
Der volle Inhalt der QuelleDandurand, Luc. „Detection of network infrastructure attacks using artificial traffic“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq44906.pdf.
Der volle Inhalt der QuelleTaggart, Benjamin T. „Incorporating neural network traffic prediction into freeway incident detection“. Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=723.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains viii, 55 p. : ill. (some col.) Vita. Includes abstract. Includes bibliographical references (p. 52-55).
Kakavelakis, Georgios. „A real-time system for abusive network traffic detection“. Thesis, Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/5754.
Der volle Inhalt der QuelleAbusive network traffic--to include unsolicited e-mail, malware propagation, and denial-of-service attacks--remains a constant problem in the Internet. Despite extensive research in, and subsequent deployment of, abusive-traffic detection infrastructure, none of the available techniques addresses the problem effectively or completely. The fundamental failing of existing methods is that spammers and attack perpetrators rapidly adapt to and circumvent new mitigation techniques. Analyzing network traffic by exploiting transport-layer characteristics can help remedy this and provide effective detection of abusive traffic. Within this framework, we develop a real-time, online system that integrates transport layer characteristics into the existing SpamAssasin tool for detecting unsolicited commercial e-mail (spam). Specifically, we implement the previously proposed, but undeveloped, SpamFlow technique. We determine appropriate algorithms based on classification performance, training required, adaptability, and computational load. We evaluate system performance in a virtual test bed and live environment and present analytical results. Finally, we evaluate our system in the context of Spam Assassin's auto-learning mode, providing an effective method to train the system without explicit user interaction or feedback.
Bücher zum Thema "Network traffic detection"
Bhuyan, Monowar H., Dhruba K. Bhattacharyya und Jugal K. Kalita. Network Traffic Anomaly Detection and Prevention. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65188-0.
Der volle Inhalt der QuelleThancanamootoo, S. Automatic detection of traffic incidents on a signal-controlled road network. Newcastle: University of Newcastle upon Tyne, Transport Operations Research Group, 1988.
Den vollen Inhalt der Quelle findenBiersack, Ernst. Data Traffic Monitoring and Analysis: From Measurement, Classification, and Anomaly Detection to Quality of Experience. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Den vollen Inhalt der Quelle findenKalita, Jugal K., Monowar H. Bhuyan und Dhruba K. Bhattacharyya. Network Traffic Anomaly Detection and Prevention: Concepts, Techniques, and Tools. Springer, 2018.
Den vollen Inhalt der Quelle findenKalita, Jugal K., Monowar H. Bhuyan und Dhruba K. Bhattacharyya. Network Traffic Anomaly Detection and Prevention: Concepts, Techniques, and Tools. Springer, 2017.
Den vollen Inhalt der Quelle findenTari, Zahir, Adil Fahad, Abdulmohsen Almalawi und Xun Yi. Network Classification for Traffic Management: Anomaly Detection, Feature Selection, Clustering and Classification. Institution of Engineering & Technology, 2020.
Den vollen Inhalt der Quelle findenTari, Zahir, Adil Fahad, Abdulmohsen Almalawi und Xun Yi. Network Classification for Traffic Management: Anomaly detection, feature selection, clustering and classification. Institution of Engineering and Technology, 2020. http://dx.doi.org/10.1049/pbpc032e.
Der volle Inhalt der QuelleAghdam, Hamed Habibi, und Elnaz Jahani Heravi. Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification. Springer, 2017.
Den vollen Inhalt der Quelle findenAghdam, Hamed Habibi, und Elnaz Jahani Heravi. Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification. Springer, 2018.
Den vollen Inhalt der Quelle findenBiersack, Ernst, Christian Callegari und Maja Matijasevic. Data Traffic Monitoring and Analysis: From Measurement, Classification, and Anomaly Detection to Quality of Experience. Springer, 2013.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Network traffic detection"
Liu, ChenHuan, QianKun Liu, ShanShan Hao, CongXiao Bao und Xing Li. „IPv6-Darknet Network Traffic Detection“. In Lecture Notes in Computer Science, 231–41. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78612-0_19.
Der volle Inhalt der QuelleCui, Qian, Guy-Vincent Jourdan, Gregor V. Bochmann und Iosif-Viorel Onut. „Proactive Detection of Phishing Kit Traffic“. In Applied Cryptography and Network Security, 257–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78375-4_11.
Der volle Inhalt der QuelleColuccia, Angelo, Alessandro D’Alconzo und Fabio Ricciato. „Distribution-Based Anomaly Detection in Network Traffic“. In Data Traffic Monitoring and Analysis, 202–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36784-7_9.
Der volle Inhalt der QuelleBhuyan, Monowar H., Dhruba K. Bhattacharyya und Jugal K. Kalita. „Network Traffic Anomaly Detection Techniques and Systems“. In Computer Communications and Networks, 115–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65188-0_4.
Der volle Inhalt der Quellede la Puerta, José Gaviria, Iker Pastor-López, Borja Sanz und Pablo G. Bringas. „Network Traffic Analysis for Android Malware Detection“. In Lecture Notes in Computer Science, 468–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29859-3_40.
Der volle Inhalt der QuelleMoussas, Vassilios C. „Adaptive Traffic Modelling for Network Anomaly Detection“. In Springer Optimization and Its Applications, 333–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74325-7_17.
Der volle Inhalt der QuelleBialas, Andrzej, Marcin Michalak und Barbara Flisiuk. „Anomaly Detection in Network Traffic Security Assurance“. In Advances in Intelligent Systems and Computing, 46–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19501-4_5.
Der volle Inhalt der QuelleKang, Koohong. „Anomaly Detection of Hostile Traffic Based on Network Traffic Distributions“. In Lecture Notes in Computer Science, 781–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89524-4_77.
Der volle Inhalt der QuelleMazel, Johan, Pedro Casas und Philippe Owezarski. „Sub-Space Clustering and Evidence Accumulation for Unsupervised Network Anomaly Detection“. In Traffic Monitoring and Analysis, 15–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20305-3_2.
Der volle Inhalt der QuelleCho, Yoohee, Koohong Kang, Ikkyun Kim und Kitae Jeong. „Baseline Traffic Modeling for Anomalous Traffic Detection on Network Transit Points“. In Management Enabling the Future Internet for Changing Business and New Computing Services, 385–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04492-2_39.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Network traffic detection"
Si, Wen, Jianghai Li, Ronghong Qu und Xiaojin Huang. „Anomaly Detection for Network Traffic of I&C Systems Based on Neural Network“. In 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16900.
Der volle Inhalt der QuelleGuillot, Andreas, Romain Fontugne, Philipp Winter, Pascal Merindol, Alistair King, Alberto Dainotti und Cristel Pelsser. „Chocolatine: Outage Detection for Internet Background Radiation“. In 2019 Network Traffic Measurement and Analysis Conference (TMA). IEEE, 2019. http://dx.doi.org/10.23919/tma.2019.8784607.
Der volle Inhalt der QuelleShah, Anant, Romain Fontugne, Emile Aben, Cristel Pelsser und Randy Bush. „Disco: Fast, good, and cheap outage detection“. In 2017 Network Traffic Measurement and Analysis Conference (TMA). IEEE, 2017. http://dx.doi.org/10.23919/tma.2017.8002902.
Der volle Inhalt der QuelleSalvador, Paulo, und Antonio Nogueira. „Customer-side detection of Internet-scale traffic redirection“. In 2014 16th International Telecommunications Network Strategy and Planning Symposium (Networks). IEEE, 2014. http://dx.doi.org/10.1109/netwks.2014.6958532.
Der volle Inhalt der QuelleGoodall, John R. „Visualizing network traffic for intrusion detection“. In the 6th ACM conference. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1142405.1142465.
Der volle Inhalt der QuelleNikishova, Arina, Irina Ananina und Evgeny Ananin. „Network traffic clustering for intrusion detection“. In IV International research conference "Information technologies in Science, Management, Social sphere and Medicine" (ITSMSSM 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/itsmssm-17.2017.53.
Der volle Inhalt der QuelleMichalak, Marcin, Łukasz Wawrowski, Marek Sikora, Rafał Kurianowicz, Artur Kozłowski und Andrzej Białas. „Outlier Detection in Network Traffic Monitoring“. In 10th International Conference on Pattern Recognition Applications and Methods. SCITEPRESS - Science and Technology Publications, 2021. http://dx.doi.org/10.5220/0010238205230530.
Der volle Inhalt der QuelleDe Lucia, Michael, Paul E. Maxwell, Nathaniel D. Bastian, Ananthram Swami, Brian Jalaian und Nandi Leslie. „Machine learning raw network traffic detection“. In Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III, herausgegeben von Tien Pham, Latasha Solomon und Myron E. Hohil. SPIE, 2021. http://dx.doi.org/10.1117/12.2586114.
Der volle Inhalt der QuellePrasse, Paul, Lukas Machlica, Tomas Pevny, Jiri Havelka und Tobias Scheffer. „Malware Detection by Analysing Network Traffic with Neural Networks“. In 2017 IEEE Security and Privacy Workshops (SPW). IEEE, 2017. http://dx.doi.org/10.1109/spw.2017.8.
Der volle Inhalt der QuelleChapaneri, Radhika, und Seema Shah. „Detection of Malicious Network Traffic using Convolutional Neural Networks“. In 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE, 2019. http://dx.doi.org/10.1109/icccnt45670.2019.8944814.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Network traffic detection"
Bardhan, Shuvo, Mitsuhiro Hatada, James Filliben, Douglas Montgomery und Alexander Jia. An Evaluation Design for Comparing Netflow Based Network Anomaly Detection Systems Using Synthetic Malicious Traffic. National Institute of Standards and Technology, März 2021. http://dx.doi.org/10.6028/nist.tn.2142.
Der volle Inhalt der QuelleAlbrecht, Jochen, Andreas Petutschnig, Laxmi Ramasubramanian, Bernd Resch und Aleisha Wright. Comparing Twitter and LODES Data for Detecting Commuter Mobility Patterns. Mineta Transportation Institute, Mai 2021. http://dx.doi.org/10.31979/mti.2021.2037.
Der volle Inhalt der Quelle