Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Network devices“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Network devices" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Network devices"
Hamza, Muhammad, Syed Mashhad M. Geelani, Qamar Nawaz, Asif Kabir und Isma Hamid. „Clustering of IoT Devices Using Device Profiling and Behavioral Analysis to Build Efficient Network Policies“. April 2021 40, Nr. 2 (01.04.2021): 335–45. http://dx.doi.org/10.22581/muet1982.2102.08.
Der volle Inhalt der QuelleAhmad, Hamza Sajjad, Muhammad Junaid Arshad und Muhammad Sohail Akram. „Device Authentication and Data Encryption for IoT Network by Using Improved Lightweight SAFER Encryption With S-Boxes“. International Journal of Embedded and Real-Time Communication Systems 12, Nr. 3 (Juli 2021): 1–13. http://dx.doi.org/10.4018/ijertcs.2021070101.
Der volle Inhalt der QuelleRodriguez Medel, Abel, und Jose Marcos C. Brito. „Random-Access Accelerator (RAA): A Framework to Speed Up the Random-Access Procedure in 5G New Radio for IoT mMTC by Enabling Device-To-Device Communications“. Sensors 20, Nr. 19 (25.09.2020): 5485. http://dx.doi.org/10.3390/s20195485.
Der volle Inhalt der QuelleSun, Wei, Hao Zhang, Li-jun Cai, Ai-min Yu, Jin-qiao Shi und Jian-guo Jiang. „A Novel Device Identification Method Based on Passive Measurement“. Security and Communication Networks 2019 (23.06.2019): 1–11. http://dx.doi.org/10.1155/2019/6045251.
Der volle Inhalt der QuelleHasan Al-Bowarab, Mustafa, Nurul Azma Zakaria, Zaheera Zainal Abidin und Ziadoon Kamil Maseer. „Review on Device-to-Device Communication in Cellular based Network Systems“. International Journal of Engineering & Technology 7, Nr. 3.20 (01.09.2018): 435. http://dx.doi.org/10.14419/ijet.v7i3.20.20587.
Der volle Inhalt der QuelleYi-Wei Ma, Yi-Wei Ma, Jiann-Liang Chen Yi-Wei Ma, Yu-Liang Tang Jiann-Liang Chen und Kuan-Hung Lai Yu-Liang Tang. „Towards Adaptive Network Resource Orchestration for Cognitive Radio Networks“. 網際網路技術學刊 23, Nr. 5 (September 2022): 1087–97. http://dx.doi.org/10.53106/160792642022092305017.
Der volle Inhalt der QuelleRondeau, Christopher M., J. Addison Betances und Michael A. Temple. „Securing ZigBee Commercial Communications Using Constellation Based Distinct Native Attribute Fingerprinting“. Security and Communication Networks 2018 (11.07.2018): 1–14. http://dx.doi.org/10.1155/2018/1489347.
Der volle Inhalt der QuelleLaguidi, Ahmed, Tarik Hachad und Lamiae Hachad. „Mobile network connectivity analysis for device to device communication in 5G network“. International Journal of Electrical and Computer Engineering (IJECE) 13, Nr. 1 (01.02.2023): 680. http://dx.doi.org/10.11591/ijece.v13i1.pp680-687.
Der volle Inhalt der QuelleOgogo, Wycliffe Lamech. „Real-Time Monitoring of Network Devices: Its Effectiveness in Enhancing Network Security“. East African Journal of Information Technology 3, Nr. 1 (04.03.2021): 1–6. http://dx.doi.org/10.37284/eajit.3.1.153.
Der volle Inhalt der QuelleA., Dr Sathesh. „OPTIMIZED MULTI-OBJECTIVE ROUTING FOR WIRELESS COMMUNICATION WITH LOAD BALANCING“. Journal of Trends in Computer Science and Smart Technology 2019, Nr. 02 (23.12.2019): 106–20. http://dx.doi.org/10.36548/jtcsst.2019.2.004.
Der volle Inhalt der QuelleDissertationen zum Thema "Network devices"
Alexander, David. „A Network Metadata Infrastructure for Locating Network Devices“. Ohio University / OhioLINK, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1088176648.
Der volle Inhalt der QuelleKühnert, Wolfram. „Dynamic Devices Network Architecture“. [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10952962.
Der volle Inhalt der QuelleZenteno, Efrain. „Vector Measurements for Wireless Network Devices“. Licentiate thesis, KTH, Signalbehandling, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-111863.
Der volle Inhalt der QuelleQC 20130204
Duan, Xiao. „DSP-enabled reconfigurable optical network devices and architectures for cloud access networks“. Thesis, Bangor University, 2018. https://research.bangor.ac.uk/portal/en/theses/dspenabled-reconfigurable-optical-network-devices-and-architectures-for-cloud-access-networks(68eaa57e-f0af-4c67-b1cf-c32cfd2ee00f).html.
Der volle Inhalt der QuelleCardwell, Gregory S. „Residual network data structures in Android devices“. Thesis, Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/5506.
Der volle Inhalt der QuelleThe emergence and recent ubiquity of Smartphones present new opportunities and challenges to forensic examiners. Smartphones enable new mobile application and use paradigms by being constantly attached to the Internet via one of several physical communication media, e.g. cellular radio, WiFi, or Bluetooth. The Smartphone's storage medium represents a potential source of current and historical network metadata and records of prior data transfers. By using known ground truth data exchanges in a controlled experimental environment, this thesis identifies network metadata stored by the Android operating system that can be readily retrieved from the device's internal non-volatile storage. The identified network metadata can ascertain the identity of prior network access points to which the device associated. An important by-product of this research is a well-labeled Android Smartphone image corpus, allowing the mobile forensic community to perform repeatable, scientific experiments, and to test mobile forensic tools.
Anderson, Pehr C. (Pehr Christian) 1974. „Filaments : lightweight network interfaces for embedded devices“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/46249.
Der volle Inhalt der QuelleIncludes bibliographical references (leaf 63).
Filaments are low-cost interfaces for attaching devices to an Ethernet network. While most networking research pushes for faster high-end systems, the filament project targets low-end devices with the goal of making networking easy. Filaments wrap the complexity of the network into a simple and convenient package. The vast majority of device communications require only a tiny thread or filament of connectivity. Before filaments, one could either tie each device to a desktop PC or to deploy a specialized device network. Filaments allow you to leverage the same network used by desktop computers without making devices dependent on them.
by Pehr C. Anderson.
M.Eng.
Tan, SiewYeen Agnes. „A Network Measurement Tool for Handheld Devices“. Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/32982.
Der volle Inhalt der QuelleMaster of Science
Yusuf, Adewale, Jerry Lartey und Vilhelm Wareus. „Network Admission Control (NAC)Securing end point devices“. Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-5507.
Der volle Inhalt der QuelleThere have been remarkable growths in wireless communication networks in
recent years; this is because of its merits over the wired networks such as
Mobility and convenience. Wireless networks transmit the signal over the
open air via radio waves of different frequencies, this makes it to be
vulnerable to several attacks and anybody on the street can easily intercept the
wireless data or inject new data into the entire network. There has been
existence of wired equivalent privacy (WEP) protocol (IEEE 802.11i), which
was designed for wireless network security. There were concerns of security
vulnerabilities in WEP; this made it necessary for the implementation of
another solution to overcome the weaknesses of the previous wireless
network security. The IEEE 802.1X (port-based network admission control)
which is defined on Extensible Authentication protocol (EAP) provides
effective and efficient admission control to wireless and other networks
devices [8].
Our thesis investigates the efficiency of NAC (IEEE 802.1X) as a security
solution, access different vendor solutions, protocols supported and look into
the inter-operability of these various vendors. In as much as we support the
premise of NAC being an excellent solution, we will also make brilliant
recommendations in this thesis to be considered for future refinements of this
security solution as well as deployment scenarios for the university network.
Spadavecchia, Ljiljana. „A network-based asynchronous architecture for cryptographic devices“. Thesis, University of Edinburgh, 2006. http://hdl.handle.net/1842/860.
Der volle Inhalt der QuelleKrishna, Ashwin. „Composing and connecting devices in animal telemetry network“. Kansas State University, 2016. http://hdl.handle.net/2097/32882.
Der volle Inhalt der QuelleDepartment of Computing and Information Sciences
Venkatesh P. Ranganath
As the Internet of Things (IoT) continues to grow, the need for services that span multiple application domains will continue to increase to realise the numerous possibilities enabled by IoT. Today, however, heterogeneity among devices leads to interoperability issues while building a system of systems and often give rise to closed ecosystems. The issues with interoperability are driven by the inability of devices and apps from different vendors to communicate with each other. The interoperability problem forces the users to stick to one particular vendor, leading to vendor lock-in. To achieve interoperability, the users have to do the heavy lifting (at times impossible) of connecting heterogeneous devices. As we slowly move towards system-of-systems and IoT, there is a real need to support heterogeneity and interoperability. A recent effort in Santos Lab developed Medical Device Coordination Framework (MDCF), which was a step to address these issues in the space of human medical systems. Subsequently, we have been wondering if a similar solution can be employed in the area of animal science. In this effort, by borrowing observations from MDCF and knowledge from on-field experience, we have created a demonstration showcasing how a combination of precise component descriptions (via DSL) and communication patterns can be used in software development and deployment to overcome barriers due to heterogeneity, interoperability and to enable an open ecosystem of apps and devices in the space of animal telemetry.
Bücher zum Thema "Network devices"
Interconnecting Cisco network devices. Indianapolis, IN: Cisco Press, 2008.
Den vollen Inhalt der Quelle findenM, Thomas Thomas, Hrsg. ICND: Interconnecting Cisco network devices. New York: McGraw-Hill, 2000.
Den vollen Inhalt der Quelle findenNetwork algorithmics: An interdisciplinary approach to designing fast networked devices. Amsterdam: Elsevier/Morgan Kaufmann, 2005.
Den vollen Inhalt der Quelle findenVarghese, George. Network Algorithmics: An Interdisciplinary Approach to Designing Fast Networked Devices. Burlington: Elsevier, 2004.
Den vollen Inhalt der Quelle findenVarghese, George. Network algorithmics: An interdisciplinary approach to designing fast networked devices. San Francisco, CA: Morgan Kaufmann, 2005.
Den vollen Inhalt der Quelle findenRusen, Ciprian Adrian. Network your computers & devices step by step. Sebastopol, CA: O'Reilly Media, 2010.
Den vollen Inhalt der Quelle findenMcQuerry, Steve. Authorized self-study guide: Interconnecting Cisco network devices. 2. Aufl. Indianapolis, Ind: Cisco Press, 2008.
Den vollen Inhalt der Quelle findenA modular and extensible network storage architecture. Cambrdige: Cambridge University Press, 1995.
Den vollen Inhalt der Quelle findenAdamski, M. Design of Digital Systems and Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
Den vollen Inhalt der Quelle findenBill, Mann, Hrsg. Wireless devices end to end. New York, NY: Hungry Minds, 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Network devices"
Chowdhury, Dhiman Deb. „Timing Devices“. In NextGen Network Synchronization, 65–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71179-5_5.
Der volle Inhalt der QuelleRamamurthy, Byrav. „Optical Network Devices“. In Design of Optical WDM Networks, 9–31. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1675-0_2.
Der volle Inhalt der QuelleVanem, Erik, Dao Tran, Tore E. Jønvik, Pål Løkstad und Do Thanh. „Managing Heterogeneous Services and Devices with the Device Unifying Service“. In Integrated Network Management VIII, 379–92. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-0-387-35674-7_38.
Der volle Inhalt der QuelleFoley, Gráinne, und Fergus O’Reilly. „Software Distribution for Wireless Devices“. In Integrated Network Management VIII, 469–72. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-0-387-35674-7_46.
Der volle Inhalt der QuelleThakur, Kutub, und Al-Sakib Khan Pathan. „Securing Wireless Network Communication“. In Securing Mobile Devices and Technology, 167–90. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003230106-11.
Der volle Inhalt der QuellePal, Arpan, Chirabrata Bhaumik, Priyanka Sinha und Avik Ghose. „Intelligent Social Network of Devices“. In Computational Social Networks, 329–48. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4048-1_13.
Der volle Inhalt der QuelleHalsey, Mike. „Managing Network Connections and Devices“. In The Windows 10 Productivity Handbook, 79–88. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-3294-1_8.
Der volle Inhalt der QuelleNespor, Jan. „Devices and Educational Change“. In Researching Education Through Actor-Network Theory, 1–22. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118275825.ch1.
Der volle Inhalt der QuelleHutter, Michael, Marcel Medwed, Daniel Hein und Johannes Wolkerstorfer. „Attacking ECDSA-Enabled RFID Devices“. In Applied Cryptography and Network Security, 519–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01957-9_32.
Der volle Inhalt der QuelleThakur, Kutub, und Al-Sakib Khan Pathan. „Working Principle of Cellular Network“. In Securing Mobile Devices and Technology, 89–104. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003230106-6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Network devices"
Dudnik, Andriy, Ivan Bakhov, Olha Cholyshkina, Andriy Fesenko, Olexander Grinenko, Volodymyr Brodkevych und Serhii Zybin. „Cognitive Positioning Technologies for IoT Network Devices“. In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001847.
Der volle Inhalt der QuelleRyan, Les M. „Breaking the Barriers: An Architecture for Multi-Host Access to Field Devices“. In 1996 1st International Pipeline Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/ipc1996-1909.
Der volle Inhalt der QuelleIsuyama, Vivian Kimie, und Bruno De Carvalho Albertini. „Comparison of Convolutional Neural Network Models for Mobile Devices“. In Workshop em Desempenho de Sistemas Computacionais e de Comunicação. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/wperformance.2021.15724.
Der volle Inhalt der QuelleLi, Yao, Xiaohui Chen, Nan Hua und Xiaoping Zheng. „A Novel Virtual Optical Network Embedding Strategy for Optical Network Virtualization“. In Photonic Networks and Devices. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/networks.2014.nt1c.3.
Der volle Inhalt der QuelleLittlewood, Paul. „Filterless Networks: Merely Interesting or Valued Network Technology?“ In Photonic Networks and Devices. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/networks.2016.new3c.2.
Der volle Inhalt der QuelleChamania, Mohit, und Xiaomin Chen. „Analytics-driven Network Management“. In Photonic Networks and Devices. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/networks.2019.neth1d.1.
Der volle Inhalt der QuelleChan, Vincent. „Free Space Optical Network Architecture“. In Photonic Networks and Devices. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/networks.2017.nem4b.2.
Der volle Inhalt der QuelleWosinska, Lena. „Optical Network Architectures for Datacenters“. In Photonic Networks and Devices. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/networks.2017.new2b.1.
Der volle Inhalt der QuelleLembo, Leonardo, Salvatore Maresca, Giovanni Serafino, Filippo Scotti, Antonio Malacarne, Paolo Ghelfi und Antonella Bogoni. „Microwave Photonics for a Radar Network“. In Photonic Networks and Devices. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/networks.2019.neth2d.2.
Der volle Inhalt der QuelleSimsarian, Jesse. „Transport Network OS: from Physical to Abstractions“. In Photonic Networks and Devices. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/networks.2017.nem2b.1.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Network devices"
MacFaden, M., D. Partain, J. Saperia und W. Tackabury. Configuring Networks and Devices with Simple Network Management Protocol (SNMP). RFC Editor, April 2003. http://dx.doi.org/10.17487/rfc3512.
Der volle Inhalt der QuelleBradner, S. Benchmarking Terminology for Network Interconnection Devices. RFC Editor, Juli 1991. http://dx.doi.org/10.17487/rfc1242.
Der volle Inhalt der QuelleBradner, S., und J. McQuaid. Benchmarking Methodology for Network Interconnect Devices. RFC Editor, Mai 1996. http://dx.doi.org/10.17487/rfc1944.
Der volle Inhalt der QuelleBradner, S., und J. McQuaid. Benchmarking Methodology for Network Interconnect Devices. RFC Editor, März 1999. http://dx.doi.org/10.17487/rfc2544.
Der volle Inhalt der QuellePopoviciu, C., A. Hamza, G. Van de Velde und D. Dugatkin. IPv6 Benchmarking Methodology for Network Interconnect Devices. RFC Editor, Mai 2008. http://dx.doi.org/10.17487/rfc5180.
Der volle Inhalt der QuelleLevkowetz, H., und S. Vaarala. Mobile IP Traversal of Network Address Translation (NAT) Devices. RFC Editor, April 2003. http://dx.doi.org/10.17487/rfc3519.
Der volle Inhalt der QuelleWatrobski, Paul, Murugiah Souppaya, Joshua Klosterman und William Barker. Methodology for Characterizing Network Behavior of Internet of Things Devices. National Institute of Standards and Technology, Januar 2022. http://dx.doi.org/10.6028/nist.ir.8349-draft.
Der volle Inhalt der QuelleColella, Whitney G. Network design optimization of fuel cell systems and distributed energy devices. Office of Scientific and Technical Information (OSTI), Juli 2010. http://dx.doi.org/10.2172/993325.
Der volle Inhalt der QuelleKumar, Prem, Seng-Tiong Ho und Bruce W. Wessels. Integrated Devices for Terabit per Second 1.3 and 1.5 Micron WDM/TDM Network Applications. Fort Belvoir, VA: Defense Technical Information Center, Juni 1996. http://dx.doi.org/10.21236/ada438395.
Der volle Inhalt der QuelleZhang, Jing, Lei Yan und Jing Deng. Comparison of 4 tibial fixation devices in anterior cruciate ligament reconstruction: result from a network meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2022. http://dx.doi.org/10.37766/inplasy2022.11.0087.
Der volle Inhalt der Quelle