Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Negative emissions technologies (NETs)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Negative emissions technologies (NETs)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Negative emissions technologies (NETs)"
Yan, Jinyue, Michael Obersteiner, Kenneth Möllersten und Jose Roberto Moreira. „Negative Emission Technologies – NETs“. Applied Energy 255 (Dezember 2019): 113749. http://dx.doi.org/10.1016/j.apenergy.2019.113749.
Der volle Inhalt der QuelleSmith, Pete, R. Stuart Haszeldine und Stephen M. Smith. „Preliminary assessment of the potential for, and limitations to, terrestrial negative emission technologies in the UK“. Environmental Science: Processes & Impacts 18, Nr. 11 (2016): 1400–1405. http://dx.doi.org/10.1039/c6em00386a.
Der volle Inhalt der QuelleFajardy, Mathilde, und Niall Mac Dowell. „Can BECCS deliver sustainable and resource efficient negative emissions?“ Energy & Environmental Science 10, Nr. 6 (2017): 1389–426. http://dx.doi.org/10.1039/c7ee00465f.
Der volle Inhalt der QuelleHilaire, Jérôme, Jan C. Minx, Max W. Callaghan, Jae Edmonds, Gunnar Luderer, Gregory F. Nemet, Joeri Rogelj und Maria del Mar Zamora. „Negative emissions and international climate goals—learning from and about mitigation scenarios“. Climatic Change 157, Nr. 2 (17.10.2019): 189–219. http://dx.doi.org/10.1007/s10584-019-02516-4.
Der volle Inhalt der QuelleKato, Etsushi, und Atsushi Kurosawa. „Role of negative emissions technologies (NETs) and innovative technologies in transition of Japan’s energy systems toward net-zero CO2 emissions“. Sustainability Science 16, Nr. 2 (30.01.2021): 463–75. http://dx.doi.org/10.1007/s11625-021-00908-z.
Der volle Inhalt der QuelleSarnoff, Joshua D. „Negative-Emission Technologies and Patent Rights after COVID-19“. Climate Law 10, Nr. 3-4 (18.11.2020): 225–65. http://dx.doi.org/10.1163/18786561-10030001.
Der volle Inhalt der QuelleFridahl, Mathias, Anders Hansson und Simon Haikola. „Towards Indicators for a Negative Emissions Climate Stabilisation Index: Problems and Prospects“. Climate 8, Nr. 6 (11.06.2020): 75. http://dx.doi.org/10.3390/cli8060075.
Der volle Inhalt der QuellePimentel, Jean, Ákos Orosz, Kathleen B. Aviso, Raymond R. Tan und Ferenc Friedler. „Conceptual Design of a Negative Emissions Polygeneration Plant for Multiperiod Operations Using P-Graph“. Processes 9, Nr. 2 (27.01.2021): 233. http://dx.doi.org/10.3390/pr9020233.
Der volle Inhalt der QuelleCreutzig, Felix, Christian Breyer, Jérôme Hilaire, Jan Minx, Glen P. Peters und Robert Socolow. „The mutual dependence of negative emission technologies and energy systems“. Energy & Environmental Science 12, Nr. 6 (2019): 1805–17. http://dx.doi.org/10.1039/c8ee03682a.
Der volle Inhalt der QuelleMeysman, Filip J. R., und Francesc Montserrat. „Negative CO 2 emissions via enhanced silicate weathering in coastal environments“. Biology Letters 13, Nr. 4 (April 2017): 20160905. http://dx.doi.org/10.1098/rsbl.2016.0905.
Der volle Inhalt der QuelleDissertationen zum Thema "Negative emissions technologies (NETs)"
Gren, Sofia, und Linnea Sörman. „Interpretations of concepts and implementation of negative emissions technologies (NETs) in long-term climate targets : A cross country comparison“. Thesis, Linköpings universitet, Institutionen för tema, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176108.
Der volle Inhalt der QuelleLändernas långsiktiga klimatmål beskrivs av olika begrepp som är beroende av negativa utsläppstekniker för att målen ska nås. Denna avhandling är en jämförelse mellan sju länder där ländernas likheter och skillnader undersöks genom deras val av begrepp och även deras planer för att implementera tekniker för att nå negativa utsläpp. Det empiriska materialet samlades in från intervjuer med experter från varje land. Begrepp i de långsiktiga klimatmålen kan ha olika tolkningar och det råder osäkerhet om vilka utsläpp som täcks upp inom de olika begreppen. Negativa utsläppstekniker är avgörande för att uppnå alla typer av netto-nollmål men de befinner sig i väldigt tidiga faser av utveckling, förutom skog som redan finns på plats och det finns flera faktorer som påverkar möjligheterna att implementera negativa utsläppstekniker. Det är viktigt att inte fokusera för mycket på negativa utsläppstekniker för att uppfylla de långsiktiga klimatmålen, de bör fungera som ett komplement till utsläppsminskning och rikta in sig på de oundvikliga utsläppen. Vi rekommenderar att länder klargör vilka utsläpp som ingår i begreppen, fastställer specifika mål för negativa utsläppstekniker och slutligen satsar mycket på att klargöra policyinstrument relaterade till negativa utsläppstekniker.
Sclarsic, Sarah Mary Haiken. „A bioengineering roadmap for negative emissions technologies“. Thesis, Massachusetts Institute of Technology, 2021. https://hdl.handle.net/1721.1/130839.
Der volle Inhalt der QuelleCataloged from the official PDF version of thesis.
Includes bibliographical references (pages 49-59).
Negative emissions technologies that can remove carbon dioxide from the atmosphere are a critical tool to limit global temperature rise and ocean acidification. Bioengineering capabilities have not been sufficiently assessed or utilized for the development of negative emissions technologies. Bioengineering holds the potential to improve the efficiency of some existing technologies and to create new methods of carbon removal. I review existing technologies to assess how bioengineering could improve them, focusing on technologies that could achieve at least 1 Gt of CO₂ removal per year. I also investigate and describe potential new methods of carbon removal that leverage bioengineering. Key questions for additional research are identified, as are key engineering targets for the development of improved negative emissions technologies. This evaluation of potential high-impact R&D work is intended to provide an initial roadmap for the development of bioengineered negative emissions technologies that are scalable, sustainable, and can remove gigatons of CO₂ from the atmosphere.
by Sarah Mary Haiken Sclarsic.
S.M.
S.M. Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences
„Reframing the Climate Change Problem: Evaluating the Political, Technological, and Ethical Management of Carbon Dioxide Emissions in the United States“. Doctoral diss., 2020. http://hdl.handle.net/2286/R.I.57290.
Der volle Inhalt der QuelleDissertation/Thesis
Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2020
Bücher zum Thema "Negative emissions technologies (NETs)"
Negative Emissions Technologies and Reliable Sequestration. Washington, D.C.: National Academies Press, 2019. http://dx.doi.org/10.17226/25259.
Der volle Inhalt der QuelleRackley, Stephen A. Negative Emissions Technologies for Climate Change Mitigation. Elsevier, 2021.
Den vollen Inhalt der Quelle findenNational Academies of Sciences, Engineering, and Medicine. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. National Academies Press, 2019.
Den vollen Inhalt der Quelle findenKemmerer, Lisa. Eating Earth. Oxford University Press, 2014. http://dx.doi.org/10.1093/oso/9780199391844.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Negative emissions technologies (NETs)"
Daggash, H. A., M. Fajardy und N. Mac Dowell. „Chapter 14. Negative Emissions Technologies“. In Energy and Environment Series, 447–511. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788012744-00447.
Der volle Inhalt der QuelleRadunsky, Klaus. „The Politics and Governance of Negative Emissions Technologies“. In Climate Change Management, 87–104. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72874-2_5.
Der volle Inhalt der QuelleLea-Langton, Amanda, und Gordon Andrews. „Pre-combustion Technologies“. In Biomass Energy with Carbon Capture and Storage (BECCS): Unlocking Negative Emissions, 67–91. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119237716.ch4.
Der volle Inhalt der QuelleFinney, Karen N., Hannah Chalmers, Mathieu Lucquiaud, Juan Riaza, János Szuhánszki und Bill Buschle. „Post-combustion and Oxy-combustion Technologies“. In Biomass Energy with Carbon Capture and Storage (BECCS): Unlocking Negative Emissions, 47–66. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119237716.ch3.
Der volle Inhalt der QuelleBhave, Amit, Paul Fennell, Niall Mac Dowell, Nilay Shah und Richard H. S. Taylor. „Techno-economics of Biomass-based Power Generation with CCS Technologies for Deployment in 2050“. In Biomass Energy with Carbon Capture and Storage (BECCS): Unlocking Negative Emissions, 93–113. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119237716.ch5.
Der volle Inhalt der QuelleWinning, Matthew, Steve Pye, James Glynn, Daniel Scamman und Daniel Welsby. „How Low Can We Go? The Implications of Delayed Ratcheting and Negative Emissions Technologies on Achieving Well Below 2 °C“. In Lecture Notes in Energy, 51–65. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74424-7_4.
Der volle Inhalt der QuelleAyinde, Taiwo B., Benjamin Ahmed und Charles F. Nicholson. „Farm-Level Impacts of Greenhouse Gas Reductions for the Predominant Production Systems in Northern Nigeria“. In African Handbook of Climate Change Adaptation, 875–97. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_4.
Der volle Inhalt der QuelleTan, Raymond R., Elvin Michael R. Almario, Kathleen B. Aviso, Jose B. Cruz und Michael Angelo B. Promentilla. „Ranking Negative Emissions Technology Options under Uncertainty“. In Advances in Carbon Management Technologies, 273–85. CRC Press, 2020. http://dx.doi.org/10.1201/9780429243608-15.
Der volle Inhalt der Quellede Richter, Renaud, Sylvain Caillol und Tingzhen Ming. „Geoengineering: Sunlight reflection methods and negative emissions technologies for greenhouse gas removal“. In Managing Global Warming, 581–636. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-814104-5.00020-x.
Der volle Inhalt der QuelleGibberd, Jeremy. „Green Building Technologies“. In Cases on Green Energy and Sustainable Development, 482–510. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-8559-6.ch017.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Negative emissions technologies (NETs)"
Font-Palma, Carolina, George Lychnos, Homam Nikpey Somehsaraei, Paul Willson und Mohsen Assadi. „Comparison of Performance of Alternative Post Combustion Carbon Capture Processes for a Biogas Fueled Micro Gas Turbine“. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15558.
Der volle Inhalt der QuellePetersen, Nils Hendrik, Thomas Bexten, Christian Goßrau und Manfred Wirsum. „Analysis of the Emission Reduction Potential and Combustion Stability Limits of a Hydrogen-Fired Gas Turbine With External Exhaust Gas Recirculation“. In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-58674.
Der volle Inhalt der QuelleVesely, Ladislav, Vaclav Dostal, Jayanta Kapat, Subith Vasu und Scott Martin. „Techno-Economic Evaluation of the Effect of Impurities on the Performance of Supercritical CO2 Cycles“. In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90704.
Der volle Inhalt der QuelleUgrekhelidze, A. T. „THE GREENING OF BUILDINGS“. In INNOVATIVE TECHNOLOGIES IN SCIENCE AND EDUCATION. DSTU-Print, 2020. http://dx.doi.org/10.23947/itno.2020.363-365.
Der volle Inhalt der QuelleKhursheed, Aaiysha, George Simons, Brad Souza und Jennifer Barnes. „Quantification of Greenhouse Gas Emission Reductions From California Self-Generation Incentive Program Projects“. In ASME 2007 Power Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/power2007-22109.
Der volle Inhalt der QuelleKorytnyi, Efim, Boris Chudnovsky, Miron Perelman, Roman Saveliev, Alexander Talanker und Ezra Bar-Ziv. „Sub-Bituminous Coals Fired in Boiler Designed for Bituminous Coals“. In ASME 2008 Power Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/power2008-60041.
Der volle Inhalt der QuelleAyre, Louise S., Derek R. Johnson, Nigel N. Clark, Jason A. England, Richard J. Atkinson, David L. McKain, Bradley A. Ralston, Thomas H. Balon und Paul J. Moynihan. „Novel NOx Emission Reduction Technology for Diesel Marine Engines“. In ASME 2011 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/icef2011-60182.
Der volle Inhalt der QuelleZholbaryssov, Madi, und Azeem Sarwar. „Stator Diagnosis in Permanent Magnet Synchronous Motor (PMSM)“. In ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ipack2019-6423.
Der volle Inhalt der QuelleHeshmat, Hooshang. „Innovation is the Key to Sustaining Sustainability“. In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37432.
Der volle Inhalt der QuelleStorm, Stephen K., Danny Storm, Adam C. McClellan, R. F. Storm und Jim Mulligan. „Achieving Simultaneous NOx and Combustion Improvements on a 90MW T-Fired Unit by Applying the Fundamentals“. In ASME 2006 Power Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/power2006-88157.
Der volle Inhalt der Quelle