Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Navigation models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Navigation models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Navigation models"
Greenwood, Narcessa Gail-Rosales, Cynthia B. Taniguchi, Amy Sheldrick und Leslie Hurley. „Navigation models in diverse outpatient settings: Shared themes, challenges, and opportunities.“ Journal of Clinical Oncology 36, Nr. 30_suppl (20.10.2018): 134. http://dx.doi.org/10.1200/jco.2018.36.30_suppl.134.
Der volle Inhalt der QuelleCao, Caroline G. L., und Paul Milgram. „Direction and Location Are Not Sufficient for Navigating in Nonrigid Environments: An Empirical Study in Augmented Reality“. Presence: Teleoperators and Virtual Environments 16, Nr. 6 (01.12.2007): 584–602. http://dx.doi.org/10.1162/pres.16.6.584.
Der volle Inhalt der QuelleBodas Gallego, Alberto. „Modern Solar Navigation Techniques“. Groundings Undergraduate 14 (01.04.2023): 29–50. http://dx.doi.org/10.36399/groundingsug.14.143.
Der volle Inhalt der QuelleNosov, P. S., I. V. Palamarchuk, S. M. Zinchenko, Ya A. Nahrybelnyi, I. S. Popovych und ,. H. V. Nosova. „Development of means for experimental identification of navigator attention in ergatic systems of maritime transport“. Bulletin of the Karaganda University. "Physics" Series 97, Nr. 1 (30.03.2020): 58–69. http://dx.doi.org/10.31489/2020ph1/58-69.
Der volle Inhalt der QuelleLevchenko, O. „A METHOD FOR FORMALIZING THE DECISION-MAKING PROCESS FOR PREVENTING DANGEROUS SITUATIONS IN THE E-NAVIGATION SYSTEM“. Shipping & Navigation 34, Nr. 1 (05.05.2023): 115–26. http://dx.doi.org/10.31653/2306-5761.34.2023.115-126.
Der volle Inhalt der QuelleZhou, Gengze, Yicong Hong und Qi Wu. „NavGPT: Explicit Reasoning in Vision-and-Language Navigation with Large Language Models“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 7 (24.03.2024): 7641–49. http://dx.doi.org/10.1609/aaai.v38i7.28597.
Der volle Inhalt der QuelleBerdahl, Andrew M., Albert B. Kao, Andrea Flack, Peter A. H. Westley, Edward A. Codling, Iain D. Couzin, Anthony I. Dell und Dora Biro. „Collective animal navigation and migratory culture: from theoretical models to empirical evidence“. Philosophical Transactions of the Royal Society B: Biological Sciences 373, Nr. 1746 (26.03.2018): 20170009. http://dx.doi.org/10.1098/rstb.2017.0009.
Der volle Inhalt der QuellePalamarchuk, I. V. „MODELING THE DIVERGENCE OF SHIPS IN THE DECISION SUPPORT SYSTEM OF THE NAVIGATOR“. Scientific Bulletin Kherson State Maritime Academy 1, Nr. 22 (2020): 45–53. http://dx.doi.org/10.33815/2313-4763.2020.1.22.045-053.
Der volle Inhalt der QuelleFreeman, Robin, und Dora Biro. „Modelling Group Navigation: Dominance and Democracy in Homing Pigeons“. Journal of Navigation 62, Nr. 1 (22.12.2008): 33–40. http://dx.doi.org/10.1017/s0373463308005080.
Der volle Inhalt der QuelleJindal, Honey, und Neetu Sardana. „An Empirical Analysis of Web Navigation Prediction Techniques“. Journal of Cases on Information Technology 19, Nr. 1 (Januar 2017): 1–14. http://dx.doi.org/10.4018/jcit.2017010101.
Der volle Inhalt der QuelleDissertationen zum Thema "Navigation models"
Masek, Theodore. „Acoustic image models for navigation with forward-looking sonars“. Thesis, Monterey, Calif. : Naval Postgraduate School, 2008. http://edocs.nps.edu/npspubs/scholarly/theses/2008/Dec/08Dec%5FMasek.pdf.
Der volle Inhalt der QuelleThesis Advisor(s): Kolsch, Mathias. "December 2008." Description based on title screen as viewed on January 30, 2009. Includes bibliographical references (p. 51-52). Also available in print.
Sutton, R. „Fuzzy set models of the helmsman steering a ship in course-keeping and course-changing modes“. Thesis, Cardiff University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377871.
Der volle Inhalt der QuelleLlofriu, Alonso Martin I. „Multi-Scale Spatial Cognition Models and Bio-Inspired Robot Navigation“. Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6888.
Der volle Inhalt der QuelleJulier, Simon J. „Process models for the navigation of high speed land vehicles“. Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362011.
Der volle Inhalt der QuelleKerfs, Jeremy N. „Models for Pedestrian Trajectory Prediction and Navigation in Dynamic Environments“. DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1716.
Der volle Inhalt der QuelleKretzschmar, Henrik [Verfasser], und Wolfram [Akademischer Betreuer] Burgard. „Learning probabilistic models for mobile robot navigation = Techniken zum maschinellen Lernen probabilistischer Modelle für die Navigation mit mobilen Robotern“. Freiburg : Universität, 2014. http://d-nb.info/1123481040/34.
Der volle Inhalt der QuelleReid, Zachary A. „Leveraging 3D Models for SAR-based Navigation in GPS-denied Environments“. Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1540419210051179.
Der volle Inhalt der QuelleGoldiez, Brian. „TECHNIQUES FOR ASSESSING AND IMPROVING PERFORMANCE IN NAVIGATION AND W“. Doctoral diss., University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3603.
Der volle Inhalt der QuellePh.D.
Other
Arts and Sciences
Modeling and Simulation
Yu, Chunlei. „Contribution to evidential models for perception grids : application to intelligent vehicle navigation“. Thesis, Compiègne, 2016. http://www.theses.fr/2016COMP2293.
Der volle Inhalt der QuelleFor intelligent vehicle applications, a perception system is a key component to characterize in real-time a model of the driving environment at the surrounding of the vehicle. When modeling the environment, obstacle information is the first feature that has to be managed since collisions can be fatal for the other road users or for the passengers on-board the considered vehicle. Characterization of occupation space is therefore crucial but not sufficient for autonomous vehicles since the control system needs to find the navigable space for safe trajectory planning. Indeed, in order to run on public roads with other users, the vehicle needs to follow the traffic rules which are, for instance, described by markings painted on the carriageway. In this work, we focus on an ego-centered grid-based approach to model the environment. The objective is to include in a unified world model obstacle information with semantic road rules. To model obstacle information, occupancy is handled by interpreting the information of different sensors into the values of the cells. To model the semantic of the navigable space, we propose to introduce the notion of lane grids which consist in integrating semantic lane information into the cells of the grid. The combination of these two levels of information gives a refined environment model. When interpreting sensor data into obstacle information, uncertainty inevitably arises from ignorance and errors. Ignorance is due to the perception of new areas and errors come from noisy measurements and imprecise pose estimation. In this research, the belief function theory is adopted to deal with uncertainties and we propose evidential models for different kind of sensors like lidars and cameras. Lane grids contain semantic lane information coming from lane marking information for instance. To this end, we propose to use a prior map which contains detailed road information including road orientation and lane markings. This information is extracted from the map by using a pose estimate provided by a localization system. In the proposed model, we integrate lane information into the grids by taking into account the uncertainty of the estimated pose. The proposed algorithms have been implemented and tested on real data acquired on public roads. We have developed algorithms in Matlab and C++ using the PACPUS software framework developed at the laboratory
Lui, Sin Ting Angela. „Enhancing stochastic mobility prediction models for robust planetary navigation on unstructured terrain“. Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12904.
Der volle Inhalt der QuelleBücher zum Thema "Navigation models"
Park, Howard. Navigation conditions in lower lock approach of Ice Harbor Lock and Dam, Snake River, Washington. [Vicksburg, Miss: US Army Corps of Engineers, Engineer Research and Development Center, Coastal and Hydraulics Laboratory, 2002.
Den vollen Inhalt der Quelle findenPark, Howard. Navigation conditions in lower lock approach of Ice Harbor Lock and Dam, Snake River, Washington. Vicksburg, MS (3909 Halls Ferry Road, Vicksburg, 39180): U.S. Army Corps of Engineers, Engineer Research and Development Center, Coastal and Hydraulics Laboratory, 2002.
Den vollen Inhalt der Quelle findenLibý, Josef. Model investigations of the improvement of navigations conditions on the lower Elbe (Labe) between Střekov anf Prostřední Žleb. Prague: Výzkumný ústav vodohospodářský T.G. Masaryka, 2002.
Den vollen Inhalt der Quelle findenBottin, Robert R. Design for navigation improvements at Nome Harbor, Alaska: Coastal model investigation. Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1998.
Den vollen Inhalt der Quelle findenBottin, Robert R. Design for navigation improvements at Nome Harbor, Alaska: Coastal model investigation. Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1998.
Den vollen Inhalt der Quelle findenMyrick, Carolyn M. Navigation conditions at Mitchell Lock and Dam, Coosa River, Alabama: Hydraulic model investigation. Vicksburg, Miss: Dept. of the Army, Waterways Experiment Station, Corps of Engineers, 1985.
Den vollen Inhalt der Quelle findenMyrick, Carolyn M. Navigation conditions at Mitchell Lock and Dam, Coosa River, Alabama: Hydraulic model investigation. Vicksburg, Miss: Dept. of the Army, Waterways Experiment Station, Corps of Engineers, 1985.
Den vollen Inhalt der Quelle findenMyrick, Carolyn M. Navigation conditions in vicinity of Walter Bouldin Lock and Dam, Coosa River Project: Hydraulic model investigation. Vicksburg, Miss: Dept. of the Army, Waterways Experiment Station, Corps of Engineers, 1985.
Den vollen Inhalt der Quelle findenD, Mulherin Nathan, U.S. Cold Regions Research and Engineering Laboratory. und United States. Army. Corps of Engineers. Alaska District., Hrsg. Development and results of a Northern Sea Route transit model. [Hanover, N.H.]: Dept. of the Army, Cold Regions Research and Engineering Laboratory, 1996.
Den vollen Inhalt der Quelle findenShudde, Rex H. Some tactical algorithms for spherical geometry. Monterey, Calif: Naval Postgraduate School, 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Navigation models"
Miller, James. „Force Models“. In Planetary Spacecraft Navigation, 51–93. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78916-3_2.
Der volle Inhalt der QuelleWells, Kristen J., und Sumayah Nuhaily. „Models of Patient Navigation“. In Patient Navigation, 27–40. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6979-1_2.
Der volle Inhalt der QuelleAyoun, André, Jean-Pierre Gambotto und Jean-Luc Jezouin. „Geometric Models for Navigation“. In Mapping and Spatial Modelling for Navigation, 245–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84215-3_13.
Der volle Inhalt der QuelleChroust, Gerhard. „Navigation in process models“. In Software Process Technology, 119–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-57739-4_16.
Der volle Inhalt der QuelleYan, Jinjin, und Sisi Zlatanova. „Space-based Navigation Models“. In Seamless 3D Navigation in Indoor and Outdoor Spaces, 45–62. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003281146-3.
Der volle Inhalt der QuelleEpstein, Susan L., Anoop Aroor, Matthew Evanusa, Elizabeth I. Sklar und Simon Parsons. „Learning Spatial Models for Navigation“. In Spatial Information Theory, 403–25. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23374-1_19.
Der volle Inhalt der QuelleAckermann, Friedrich. „Digital Terrain Models of Forest Areas by Airborne Laser Profiling“. In High Precision Navigation, 239–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74585-0_17.
Der volle Inhalt der QuelleMansour, Moussa, und David Donaldson. „Invasive Electroanatomical Mapping and Navigation“. In Cardiac Electrophysiology Methods and Models, 349–56. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6658-2_17.
Der volle Inhalt der QuelleRamírez-Hernández, Luis Roberto, Julio Cesar Rodríguez-Quiñonez, Moisés J. Castro-Toscano, Daniel Hernández-Balbuena, Wendy Flores-Fuentes, Moisés Rivas-López, Lars Lindner, Danilo Cáceres-Hernández, Marina Kolendovska und Fabián N. Murrieta-Rico. „Stereoscopic Vision Systems in Machine Vision, Models, and Applications“. In Machine Vision and Navigation, 241–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22587-2_8.
Der volle Inhalt der QuelleYan, Lei, An Li, Wanfeng Ji und Yang Li. „Topographic Elevation Navigation and Positioning Fundamentals and Theoretical Models“. In Navigation: Science and Technology, 193–230. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5524-0_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Navigation models"
Balcı, Emirhan, Mehmet Sarıgül und Barış Ata. „Prompting Large Language Models for Aerial Navigation“. In 2024 9th International Conference on Computer Science and Engineering (UBMK), 304–9. IEEE, 2024. https://doi.org/10.1109/ubmk63289.2024.10773467.
Der volle Inhalt der QuelleCai, Wenzhe, Siyuan Huang, Guangran Cheng, Yuxing Long, Peng Gao, Changyin Sun und Hao Dong. „Bridging Zero-shot Object Navigation and Foundation Models through Pixel-Guided Navigation Skill“. In 2024 IEEE International Conference on Robotics and Automation (ICRA), 5228–34. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610499.
Der volle Inhalt der QuelleBurlet, J., T. Fraichard und O. Aycard. „Robust navigation using Markov models“. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2005. http://dx.doi.org/10.1109/iros.2005.1545091.
Der volle Inhalt der QuelleAnderson, Mark. „Standard optimal pilot models“. In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-3627.
Der volle Inhalt der QuelleAnthes, Christoph, Paul Heinzlreiter, Gerhard Kurka und Jens Volkert. „Navigation models for a flexible, multi-mode VR navigation framework“. In the 2004 ACM SIGGRAPH international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1044588.1044693.
Der volle Inhalt der QuelleZhang, Yubo, Hao Tan und Mohit Bansal. „Diagnosing the Environment Bias in Vision-and-Language Navigation“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/124.
Der volle Inhalt der QuelleDoman, David, und Mark Anderson. „Fixed order optimal pilot models“. In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-3871.
Der volle Inhalt der QuelleBaras, Karolina, A. Moreira und F. Meneses. „Navigation based on symbolic space models“. In 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2010. http://dx.doi.org/10.1109/ipin.2010.5646810.
Der volle Inhalt der QuelleCanciani, Aaron, und John Raquet. „Self Building World Models for Navigation“. In 2017 International Technical Meeting of The Institute of Navigation. Institute of Navigation, 2017. http://dx.doi.org/10.33012/2017.14966.
Der volle Inhalt der QuelleKruse, Thibault, Alexandra Kirsch, Harmish Khambhaita und Rachid Alami. „Evaluating directional cost models in navigation“. In HRI'14: ACM/IEEE International Conference on Human-Robot Interaction. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2559636.2559662.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Navigation models"
Gilbert, Jennifer, Stephanie Veazie, Kevin Joines, Kara Winchell, Rose Relevo, Robin Paynter und Jeanne-Marie Guise. Patient Navigation Models for Lung Cancer. Agency for Healthcare Research and Quality (AHRQ), Dezember 2018. http://dx.doi.org/10.23970/ahrqepcrapidlung.
Der volle Inhalt der QuelleRyerson, R. A. Global navigation satellite system augmentation models environmental scan. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/297405.
Der volle Inhalt der QuelleCronin, Thomas W. Natural Models for Autonomous Control of Spatial Navigation, Sensing, and Guidance. Fort Belvoir, VA: Defense Technical Information Center, Mai 2013. http://dx.doi.org/10.21236/ada594988.
Der volle Inhalt der QuelleMarshall, Justin, Thomas Cronin und Nick Roberts. Natural Models for Autonomous Control of Spatial Navigation, Sensing, and Guidance, Part 1. Fort Belvoir, VA: Defense Technical Information Center, Juni 2011. http://dx.doi.org/10.21236/ada547656.
Der volle Inhalt der QuelleMoore, Gabriel, Anton du Toit, Susie Thompson, Jillian Hutchinson, Adira Wiryoatmodjo, Prithivi Prakash Sivaprakash und Rebecca Gordon. Effectiveness of school located nurse models. The Sax Institute, Mai 2021. http://dx.doi.org/10.57022/gmwr5438.
Der volle Inhalt der QuelleAltman, Safra, Krystyna Powell und Marin Kress. Marine bioinvasion risk : review of current ecological models. Engineer Research and Development Center (U.S.), Oktober 2023. http://dx.doi.org/10.21079/11681/47820.
Der volle Inhalt der QuellePatev, Robert C., David L. Buccini, James W. Bartek und Stuart Foltz. Improved Reliability Models for Mechanical and Electrical Components at Navigation Lock and Dam and Flood Risk Management Facilities. Fort Belvoir, VA: Defense Technical Information Center, April 2013. http://dx.doi.org/10.21236/ada582967.
Der volle Inhalt der QuelleLi, Honghai, Mitchell Brown, Lihwa Lin, Yan Ding, Tanya Beck, Alejandro Sanchez,, Weiming Wu, Christopher Reed und Alan Zundel. Coastal Modeling System user's manual. Engineer Research and Development Center (U.S.), April 2024. http://dx.doi.org/10.21079/11681/48392.
Der volle Inhalt der QuelleLemasson, Bertrand, Emily Russ und Chanda Littles. A review of habitat modeling methods that can advance our ability to estimate the ecological cobenefits of dredge material placement. Engineer Research and Development Center (U.S.), September 2024. http://dx.doi.org/10.21079/11681/49425.
Der volle Inhalt der QuelleShukla, Indu, Rajeev Agrawal, Kelly Ervin und Jonathan Boone. AI on digital twin of facility captured by reality scans. Engineer Research and Development Center (U.S.), November 2023. http://dx.doi.org/10.21079/11681/47850.
Der volle Inhalt der Quelle