Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Natural hydrogen exploration and production“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Natural hydrogen exploration and production" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Natural hydrogen exploration and production"
Frery, Emanuelle, Laurent Langhi und Jelena Markov. „Natural hydrogen exploration in Australia – state of knowledge and presentation of a case study“. APPEA Journal 62, Nr. 1 (13.05.2022): 223–34. http://dx.doi.org/10.1071/aj21171.
Der volle Inhalt der QuelleWang, Lu, Zhijun Jin, Xiao Chen, Yutong Su und Xiaowei Huang. „The Origin and Occurrence of Natural Hydrogen“. Energies 16, Nr. 5 (02.03.2023): 2400. http://dx.doi.org/10.3390/en16052400.
Der volle Inhalt der QuelleJoseph, Aimikhe, Victor, und Eyankware, Emmanuel Oghenegare. „Recent Advances in White Hydrogen Exploration and Production: A Mini Review“. Journal of Energy Research and Reviews 13, Nr. 4 (24.04.2023): 64–79. http://dx.doi.org/10.9734/jenrr/2023/v13i4272.
Der volle Inhalt der QuelleBaxter, Clare, Frank La Pedalina, Andrew McMahon und Toon Hoong Lim. „Early exploration modelling of natural hydrogen systems through the use of existing open source data“. Australian Energy Producers Journal 64, Nr. 2 (16.05.2024): S320—S324. http://dx.doi.org/10.1071/ep23210.
Der volle Inhalt der QuelleGondal, Irfan Ahmad. „Offshore renewable energy resources and their potential in a green hydrogen supply chain through power-to-gas“. Sustainable Energy & Fuels 3, Nr. 6 (2019): 1468–89. http://dx.doi.org/10.1039/c8se00544c.
Der volle Inhalt der QuelleBoreham, Christopher J., Dianne S. Edwards, Krystian Czado, Nadege Rollet, Liuqi Wang, Simon van der Wielen, David Champion, Richard Blewett, Andrew Feitz und Paul A. Henson. „Hydrogen in Australian natural gas: occurrences, sources and resources“. APPEA Journal 61, Nr. 1 (2021): 163. http://dx.doi.org/10.1071/aj20044.
Der volle Inhalt der QuelleDeronzier, Jean-François, und Hélène Giouse. „Vaux-en-Bugey (Ain, France): the first gas field produced in France, providing learning lessons for natural hydrogen in the sub-surface?“ BSGF - Earth Sciences Bulletin 191 (2020): 7. http://dx.doi.org/10.1051/bsgf/2020005.
Der volle Inhalt der QuelleBoschee, Pam. „Comments: The New “Gold Rush” Hunts for Subsurface Hydrogen“. Journal of Petroleum Technology 75, Nr. 11 (01.11.2023): 10–11. http://dx.doi.org/10.2118/1123-0010-jpt.
Der volle Inhalt der QuelleCarrillo Ramirez, Alejandra, Felipe Gonzalez Penagos, German Rodriguez und Isabelle Moretti. „Natural H2 Emissions in Colombian Ophiolites: First Findings“. Geosciences 13, Nr. 12 (22.11.2023): 358. http://dx.doi.org/10.3390/geosciences13120358.
Der volle Inhalt der QuelleKernen, Rachelle, Kathryn J. Amos, Ingrid Anell, Sian Evans und Leticia Rodriguez-Blanco. „The role of salt basins in the race to net zero: a focus on Australian basins and key research topics“. Australian Energy Producers Journal 64, Nr. 2 (16.05.2024): S402—S406. http://dx.doi.org/10.1071/ep23213.
Der volle Inhalt der QuelleDissertationen zum Thema "Natural hydrogen exploration and production"
Maiga, Omar. „Caractérisation géologique et géophysique 3D d’un système de réservoirs d’hydrogène naturel : exemple du champ de Bourakèbougou, Mali“. Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS647.pdf.
Der volle Inhalt der QuelleIn the race to find clean and inexpensive ways to produce hydrogen, the natural hydrogen wells of Bourakèbougou offer a promising solution. Not only has one of them been successfully exploited to generate electricity for the local village, but its current twenty-four wells also provide a unique opportunity for geoscientists to determine the key characteristics of natural hydrogen reservoirs, the nature of the cap rocks, and the various processes involved in its accumulation, migration, and trapping in the rocks. This scientific research presents core, logging, geophysical, and geochemical studies that have been conducted to better characterize the nature of Bourakèbougou's H2 reservoirs. The study of regional geology and the entire area based on drilling data interpretation and bibliographic information was initially carried out. This resulted in a new geological map of the area and a North-South cross-section of the entire basin. Facies analysis and drilling data showed a correlation between stratigraphic wells F1 and F2 drilled in 2011, 100 km north of Bourakèbougou, and the wells in the study area located further to the south. An antiform structure was also identified around Bourakèbougou. All of these data helped validate and provide a coherent sedimentary model for the entire area. To improve the geochronological framework between different events in the area and to characterize the chronological sequence between sediments and intrusions, U/Pb dating was performed on carbonates from Bougou-6, the deepest well, and well F2. The ages obtained for some carbonates were largely influenced by the intrusion of mega-sills of dolerites between 150 and 210 million years ago (Ma). This was confirmed through dating veins derived from the carbonates of the main Bougou-6 reservoir and well F2. The dated veins, especially the one in the main reservoir containing H2, provided an age of approximately 210 Ma, corresponding to the period of magmatism known as the Central Atlantic Magmatic Province (CAMP). Only the dating of a carbonate located at 890m yielded an age that was clearly synchronous with the deposition (620 ± 100 Ma). This age confirmed the Neoproterozoic age of the sediments and established a connection with the Neoproterozoic glaciation event that occurred between 635-710 Ma (Sturtian + Marinoan). Core analyses, well imaging, logging, Rock Eval, and calcimetry revealed that the upper carbonates in which the highest amount of H2 is accumulated mainly consist of dolomitic cap carbonates, and all H2 accumulations are found in karstic cavities (thermokarst). Different Neoproterozoic facies were identified along the sequence, including stromatolites, microbialites, sandstones, and diamictites. The rocks located above the main reservoir, primarily dolerite, were characterized to understand their role in trapping H2. It was found that not only do the dolerites play a significant role in trapping due to their cumulative thickness, but the presence of aquifers can also attenuate H2 migration by slowing it down in its migration towards the surface. The diagraphic analyses, coupled with production data, have revealed that the hydrogen system is a dynamic system that is spontaneously recharged in H2-rich gas at the production timescale, unlike oil and gas reservoir systems. Finally, the analysis of geophysical data provided an understanding of the overall structure of the area and the gas phase geophysical signature
McGlocklin, Kristin Hew Eden Mario R. „Economic analysis of various reforming techniques and fuel sources for hydrogen production“. Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Fall/Theses/MCGLOCKLIN_KRISTIN_35.pdf.
Der volle Inhalt der QuelleAppressi, Lorenzo. „Biogas and bio-hydrogen: production and uses. A review“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9071/.
Der volle Inhalt der QuelleKumar, Abhishek. „Does India offer attractive investment opportunities for exploration and production of natural gas“. Thesis, University of Dundee, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.510621.
Der volle Inhalt der QuelleTarun, Cynthia. „Techno-Economic Study of CO2 Capture from Natural Gas Based Hydrogen Plants“. Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2837.
Der volle Inhalt der QuelleIn the current H2 plants, CO2 emissions originate from two sources, the combustion flue gases from the steam reformer furnace and the off-gas from the process (steam reforming and water-gas shift) reactions. The objective of this study is to develop a process that captures CO2 at minimum energy penalty in typical H2 plants.
The approach is to look at the best operating conditions when considering the H2 and steam production, CO2 production and external fuel requirements. The simulation in this study incorporates the kinetics of the steam methane reforming (SMR) and the water gas shift (WGS) reactions. It also includes the integration of CO2 capture technologies to typical H2 plants using pressure swing adsorption (PSA) to purify the H2 product. These typical H2 plants are the world standard of producing H2 and are then considered as the base case for this study. The base case is modified to account for the implementation of CO2 capture technologies. Two capture schemes are tested in this study. The first process scheme is the integration of a monoethanolamine (MEA) CO2 scrubbing process. The other scheme is the introduction of a cardo polyimide hollow fibre membrane capture process. Both schemes are designed to capture 80% of the CO2 from the H2 process at a purity of 98%.
The simulation results show that the H2 plant with the integration of CO2 capture has to be operated at the lowest steam to carbon (S/C) ratio, highest inlet temperature of the SMR and lowest inlet temperatures for the WGS converters to attain lowest energy penalty. H2 plant with membrane separation technology requires higher electricity requirement. However, it produces better quality of steam than the H2 plant with MEA-CO2 capture process which is used to supply the electricity requirement of the process. Fuel (highvale coal) is burned to supply the additional electricity requirement. The membrane based H2 plant requires higher additional electricity requirement for most of the operating conditions tested. However, it requires comparable energy penalty than the H2 plant with MEA-CO2 capture process when operated at the lowest energy operating conditions at 80% CO2 recovery.
This thesis also investigates the sensitivity of the energy penalty as function of the percent CO2 recovery. The break-even point is determined at a certain amount of CO2 recovery where the amount of energy produced is equal to the amount of energy required. This point, where no additional energy is required, is approximately 73% CO2 recovery for the MEA based capture plant and 57% CO2 recovery for the membrane based capture plant.
The amount of CO2 emissions at various CO2 recoveries using the best operating conditions is also presented. The results show that MEA plant has comparable CO2 emissions to that of the membrane plant at 80% CO2 recovery. MEA plant is more attractive than membrane plant at lower CO2 recoveries.
VASUDEVAN, ROHAN ADITHYA. „SWOT-PESTEL Study of Constraints to Decarbonization of the Natural Gas System in the EU Techno-economic analysis of hydrogen production in Portugal : Techno-economic analysis of hydrogen production in Portugal“. Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292186.
Der volle Inhalt der QuelleDet starka behovet av att ta itu med klimatförändringarna och deras negativa effekter är omfattande världen över. Den europeiska unionen utgör en pionjär när det gäller att såväl hantera sina koldioxidberoende och utsläpp som att implementera reglerande miljöpolitik, och framstår därmed som överlägsen andra stater och organisationer i detta hänseende. Unionen är emellertid fortfarande mycket beroende av fossilt bränsle för att uppfylla sina energibehov, och kvarstår därför som en av världens största importörer av naturgas. Syftet med denna forskningsavhandling är att undersöka befintliga hinder och restriktioner i EU: s politiska ramverk som medför konsekvenser avkolningen av naturgas, samt att undersöka de utjämnande kostnaderna för väteproduktion (LCOH) som kan användas för att avkolna naturgassektorn. Därmed utförs en omfattande studie baserad på befintlig akademisk och vetenskaplig litteratur, EU: s politiska ramverk och stadgar som är relevanta för naturgasindustrin. Dessutom genomförs en teknisk-ekonomisk analys av eventuella ersättningar av naturgas med väte. Valet av väte som forskningsobjekt motiveras olika forskningsstudier som indikerar vikten och förmågan att ersätta till naturgas. Till sist berör studien Portugal. som tillhandahåller en lämplig miljö för billig och grön vätgasproduktion. Av denna anledning är Portugal utvalt som den viktigaste utvärderingsregionen. Studien utvärderar det nuvarande ramverket baserat på en SWOT-analys ((Strength, Weakness, and Opportunities & Weakness), som inkluderar en PESTEL (Political, Economical, Social, Technological, Environmental och Legal) makroekonomisk faktoranalys och elicitering. Den utjömnade vätekostnaden beräknades i blått (SMR - Ångmetanreformering med naturgas som råvara) och grönt väte (elektrolyser med el från elnät, sol och vindkällor). Kostnaderna var specifika för de portugisiska förhållandena under åren 2020, 2030 och 2050 baserat på tillgänglighet av data samt anpassningen till den nationella energi- och klimatplanen (NECP) och klimatåtgärdsramen 2050. Storleken på elektrolyserar baseras på den nuvarande marknadskapaciteten medan SMR är begränsad till 300 MW. Avhandlingen tar endast hänsyn till produktionen av vätgas. Transmission, distribution och lagring av väte ligger utanför analysens räckvidd. Resultaten visar att hindren är främst relaterade till kostnadskonkurrens, förändringar i stadgar och bestämmelser, incitament och begränsningar i formerandet av efterfrågan på koldioxidsnåla gaser på marknaden. Att säkerställa energiförsörjning och tillgång på ett ekonomiskt hållbart sätt kräver omedelbara ändringar av reglerna och politiken, såsom att stimulera utbudet, att skapa en efterfrågan på koldioxidsnåla gaser och genom att beskatta kol. När det gäller LCOH dominerar blåväte beträffande produktionskostnaderna (1,33 € per kg H2) jämfört med grönt väte (4,27 respektive 3,68 € per kg H2) från elnät respektive solenergi. Osäkerhetsanalysen visar vikten av investeringskostnader och effektiviteten vid elektrolysörer och koldioxidskatten för SMR. Med förbättringar av elektrolys-tekniken och ökad koldioxidskatt skulle upptagningen av grön vätgas vara enklare och säkerställa en rättvis men konkurrenskraftig gasmarknad.
Streich, Daniel. „Stepping into Catalysis : Kinetic and Mechanistic Investigations of Photo- and Electrocatalytic Hydrogen Production with Natural and Synthetic Molecular Catalysts“. Doctoral thesis, Uppsala universitet, Fysikalisk kemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-197946.
Der volle Inhalt der QuelleFauguerolles, Colin. „Etude expérimentale de la production d'H₂ associée à la serpentinisation des péridotites au niveau des dorsales océaniques lentes : quantification, état rédox, mécanismes réactionnels“. Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2058/document.
Der volle Inhalt der QuelleTo better understand serpentinization of mantle rocks at slow-spreading ridges, several series of experiments have been conducted at 50 MPa and 250, 300 et 350 ℃ to quantify the H₂ production associated with the serpentinization process, and to clarify the relations between the H₂ generation, the nature of product mineral phases and the redox properties of H₂ bearing hydrothermal systems. The main results of this work, which represents a significant effort toward the consideration of redox parameters and processes during serpentinisation, are the following: – A new experimental method of in situ monitoring of the \fH has been set up at 250 and 300 ℃, 50 MPa. The two variables expressing the H₂ production, \molalHydAq; aq and \fH , have been related quantitatively. Results enable the \fO of hydrothermal oceanic systems to be computed from the dissolved hydrogen concentration. H₂ production starts early, increases rapidly and is continuous in our serpentinization experiments. – Harzburgite-seawater interaction experiments show that serpentinisation is an irreversible dissolution reaction of olivine and orthopyroxene and that it consists of a sequence of discrete steps involving metastable and disequilibrium phase assemblages. – Serpentinisation mechanisms and phase assemblages (especially Fe oxides) depend on \fH, the latter being closely controlled by processes of fluid circulation in the oceanic crust. – Thermodynamic modelling of H₂ rich hydrothermal fluids stresses the need to know precisely \yHydAq, the activity coefficient of \hydAq
Lomax, Franklin D. „Investigation of steam reformation of natural gas for the very small scale production of hydrogen fuel for light duty vehicles in appliance-type refueling systems“. Master's thesis, This resource online, 1997. http://scholar.lib.vt.edu/theses/available/etd-09052009-040323/.
Der volle Inhalt der QuelleMachado, Taís Espíndola. „Decomposição catalítica do metano sobre catalisador Cu-Ni-Al : taxa da reação e regeneração do catalisador“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2007. http://hdl.handle.net/10183/10051.
Der volle Inhalt der QuelleHydrogen is considered the ideal source of energy, because its combustion doesn't generate pollutants, just water. The catalytic decomposition of methane stands out among the available processes for hydrogen production because, unlike steam reform and partial oxidation, in this route there is not production of CO. The objective of this work is the kinetic study and the reaction rate determination of methane catalytic decomposition over Cu-Ni-Al catalyst for pure hydrogen production. In order to determinate the limiting step, reaction was conducted using four catalyst particle size ranges and the Mears criterion was applied. The external diffusion effects and diffusion in porous catalysts step do not influence significantly the reaction rate in the studied conditions. The reaction was carried out in a thermobalance with different temperatures (500 to 600°C) and methane concentrations (0.5 to 1.2 mol m-3) to determining the reaction rate. It was observed that the reaction is of first order, with activation energy of 50655 J mol-1. The reaction also forms carbon, which is deposited on the catalyst surface causing deactivation. The carbon oxidation for catalyst regeneration was also investigated. Repeated reaction-regeneration cycles were carried out, being the regeneration composed by oxidation or by oxidation and reduction. The oxidation was carried out at different temperatures (500 to 600°C) and times (20 to 75min), with the reaction happening in severe conditions (600°C and methane concentration of 1.2 mol m-3). The best regeneration condition, that is, the condition that allows a larger number of cycles with low activity loss, it was determined. It was also observed that the deposited carbon is in the nanotubes form, which has exceptional properties. The structure of carbon nanotubes formed during the reaction was analyzed by Scanning Electron Microscopy (SEM).
Bücher zum Thema "Natural hydrogen exploration and production"
Riazi, M. R., Hrsg. Exploration and Production of Petroleum and Natural Gas. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2016. http://dx.doi.org/10.1520/mnl73-eb.
Der volle Inhalt der QuelleMax, Michael D., und Arthur H. Johnson. Exploration and Production of Oceanic Natural Gas Hydrate. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43385-1.
Der volle Inhalt der QuelleMax, Michael D., und Arthur H. Johnson. Exploration and Production of Oceanic Natural Gas Hydrate. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00401-9.
Der volle Inhalt der QuelleRiazi, M. R. Exploration and production of petroleum and natural gas. West Conshohocken, PA: ASTM International, 2016.
Den vollen Inhalt der Quelle findenCarlson, Marvin. Oil in Nebraska: 50 years of production, 100 years of exploration, 500 million years of history. Lincoln, Neb: Nebraska Geological Survey, Conservation and Survey Division, Institute of Agriculture and Natural Resources, University of Nebraska--Lincoln, 1989.
Den vollen Inhalt der Quelle findenJifu, Li, Li Youqong und Wang Ping, Hrsg. Detailed exploration and development of highly faulted oilfields. Beijing, China: Petroleum Industry Press, 1997.
Den vollen Inhalt der Quelle findenOnuoha, K. Mosto. Oil and gas exploration and production in Nigeria: Recent developments and challenges ahead. Ibadan, Nigeria: The Postgraduate School, University of Ibadan, 2004.
Den vollen Inhalt der Quelle findenR, Plater Jason, Foster Associates (Washington, D.C.) und United States. Minerals Management Service. Gulf of Mexico OCS Region, Hrsg. Economic effects of coastal Alabama and Destin Dome offshore natural gas exploration, development, and production. New Orleans: U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, 2000.
Den vollen Inhalt der Quelle findenGuernsey, A. T. Profitability study crude oil and natural gas exploration, development, and production activities in the USA, 1959-1988. Santa Fe, New Mexico: Shell Oil Co., 1990.
Den vollen Inhalt der Quelle findenInternational Union for Conservation of Nature and Natural Resources. und Oil Industry International Exploration and Production Forum., Hrsg. Oil and gas exploration and production in mangrove areas: Guidelines for environmental protection. Gland, Switzerland: IUCN, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Natural hydrogen exploration and production"
Zhang, Jianliang, Kejiang Li, Zhengjian Liu und Tianjun Yang. „Hydrogen Production and Storage“. In Primary Exploration of Hydrogen Metallurgy, 37–115. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-6827-5_2.
Der volle Inhalt der QuelleAmaro, Helena M., M. GlóRia Esquível, Teresa S. Pinto und F. Xavier Malcata. „Hydrogen Production by Microalgae“. In Natural and Artificial Photosynthesis, 231–41. Hoboken, NJ, USA: John Wiley & Sons Inc., 2013. http://dx.doi.org/10.1002/9781118659892.ch8.
Der volle Inhalt der QuelleEroglu, Ela, Matthew Timmins und Steven M. Smith. „Green Hydrogen: Algal Biohydrogen Production“. In Natural and Artificial Photosynthesis, 267–84. Hoboken, NJ, USA: John Wiley & Sons Inc., 2013. http://dx.doi.org/10.1002/9781118659892.ch10.
Der volle Inhalt der QuelleMax, Michael D., und Arthur H. Johnson. „Exploration for Deepwater Natural Gas Hydrate“. In Exploration and Production of Oceanic Natural Gas Hydrate, 75–135. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43385-1_3.
Der volle Inhalt der QuelleMax, Michael D., und Arthur H. Johnson. „Exploration for Deepwater Natural Gas Hydrate“. In Exploration and Production of Oceanic Natural Gas Hydrate, 95–147. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00401-9_3.
Der volle Inhalt der QuelleDe Falco, Marcello. „Membrane Integration in Natural Gas Steam Reforming“. In Membrane Reactors for Hydrogen Production Processes, 103–22. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-151-6_5.
Der volle Inhalt der QuelleKumar, Kanhaiya, und Debabrata Das. „CO2Sequestration and Hydrogen Production Using Cyanobacteria and Green Algae“. In Natural and Artificial Photosynthesis, 173–215. Hoboken, NJ, USA: John Wiley & Sons Inc., 2013. http://dx.doi.org/10.1002/9781118659892.ch6.
Der volle Inhalt der QuelleBagirov, E., und I. Lerche. „Natural Hazards in Hydrocarbon Exploration and Production Assessments“. In Impact of Natural Hazards on Oil and Gas Extraction, 327–33. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-3019-7_12.
Der volle Inhalt der QuelleCraven, J. D., und L. A. Frank. „Atomic hydrogen production rates for comet P/Halley from observations with Dynamics Explorer 1“. In Exploration of Halley’s Comet, 351–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-82971-0_63.
Der volle Inhalt der QuelleMax, Michael D., und Arthur H. Johnson. „Energy Overview: Prospects for Natural Gas“. In Exploration and Production of Oceanic Natural Gas Hydrate, 1–38. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43385-1_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Natural hydrogen exploration and production"
Fidler, Brandy R., Kerry L. Sublette, Gary E. Jenneman und Greg A. Bala. „A Novel Approach to Hydrogen Sulfide Removal From Natural Gas“. In SPE/EPA/DOE Exploration and Production Environmental Conference. Society of Petroleum Engineers, 2003. http://dx.doi.org/10.2118/81203-ms.
Der volle Inhalt der QuelleAlexander, Elinor. „Natural hydrogen exploration in South Australia“. In PESA Symposium Qld 2022. PESA, 2022. http://dx.doi.org/10.36404/putz2691.
Der volle Inhalt der QuelleLeppin, Dennis. „Natural Gas Production: Performance of Commercial Technology for Removing Small Amounts of Hydrogen Sulfide“. In SPE/EPA Exploration and Production Environmental Conference. Society of Petroleum Engineers, 1995. http://dx.doi.org/10.2118/29743-ms.
Der volle Inhalt der QuelleZhao, Hongwen, Ernest A. Jones, Rajput Seemant Singh, Hasnol Hady B. Ismail und Seng WahTan. „The Hydrogen System in the Subsurface: Implications for Natural Hydrogen Exploration“. In ADIPEC. SPE, 2023. http://dx.doi.org/10.2118/216710-ms.
Der volle Inhalt der QuelleHolmes, Lance, Sandra Menpes und Matt Densley. „Natural Hydrogen and Helium Gas Exploration in the Amadeus Basin“. In Central Australian Basins Symposium IV. Petroleum Exploration Society of Australia (PESA), 2022. http://dx.doi.org/10.36404/ykii5583.
Der volle Inhalt der QuelleCrawshaw, Michael, William Brundick, Michael Juncker, Kristina Barbuto, Alyn Jenkins und Sooi Kim Lim. „A Hybrid H2S Removal Solution. Using Liquid vs. Fixed Bed H2S Scavengers in Harmony“. In Middle East Oil, Gas and Geosciences Show. SPE, 2023. http://dx.doi.org/10.2118/213604-ms.
Der volle Inhalt der QuelleSavarese, Matteo, Jérémy Bompas, Ward De Paepe und Alessandro Parente. „Towards Fast Prediction of Flame Stability and Emissions of mGT Combustion Chambers: a Chemical Reactor Network Approach“. In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-81963.
Der volle Inhalt der QuelleZhao, H., E. Jones, R. S. Singh, H. H. Ismail und S. W. Tan. „Conceptual Models of Hydrogen System: Implications for Natural Hydrogen Exploration“. In EAGE Conference on the Future of Energy - Role of Geoscience in the Energy Transition. European Association of Geoscientists & Engineers, 2023. http://dx.doi.org/10.3997/2214-4609.202372036.
Der volle Inhalt der QuellePandey, Prateek. „Billions of Barrels at Risk in Southeast Asia Due to Sour Gas“. In Offshore Technology Conference Asia. OTC, 2022. http://dx.doi.org/10.4043/31335-ms.
Der volle Inhalt der QuelleFidler, Brandy Raye, Kerry Lyn Sublette, Gary Edward Jenneman und Gregory Alan Bala. „Bioreactors for Natural-Gas Desulfurization“. In SPE/EPA/DOE Exploration and Production Environmental Conference. Society of Petroleum Engineers, 2005. http://dx.doi.org/10.2118/94420-stu.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Natural hydrogen exploration and production"
Fletcher, J., und V. Callaghan. Distributed Hydrogen Production from Natural Gas: Independent Review. Office of Scientific and Technical Information (OSTI), Oktober 2006. http://dx.doi.org/10.2172/893444.
Der volle Inhalt der QuelleSpath, P. L., und M. K. Mann. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/764485.
Der volle Inhalt der QuelleSpath, P. L., und W. A. Amos. Assessment of Natural Gas Splitting with a Concentrating Solar Reactor for Hydrogen Production. Office of Scientific and Technical Information (OSTI), April 2002. http://dx.doi.org/10.2172/15000326.
Der volle Inhalt der QuelleAmy Childers. Reducing Onshore Natural Gas and Oil Exploration and Production Impacts Using a Broad-Based Stakeholder Approach. Office of Scientific and Technical Information (OSTI), März 2011. http://dx.doi.org/10.2172/1034767.
Der volle Inhalt der QuelleSteve Holditch und Emrys Jones. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities. Office of Scientific and Technical Information (OSTI), März 2003. http://dx.doi.org/10.2172/890985.
Der volle Inhalt der QuelleOverbey, W. K. Jr, T. K. Reeves, S. P. Salamy, C. D. Locke, H. R. Johnson, R. Brunk und L. Hawkins. A novel geotechnical/geostatistical approach for exploration and production of natural gas from multiple geologic strata, Phase 1. Office of Scientific and Technical Information (OSTI), Mai 1991. http://dx.doi.org/10.2172/5219085.
Der volle Inhalt der QuelleSteve Holditch und Emrys Jones. CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/823399.
Der volle Inhalt der QuelleSteve Holditch und Emrys Jones. CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/823400.
Der volle Inhalt der QuelleOverbey, W. K. Jr, T. K. Reeves, S. P. Salamy, C. D. Locke, H. R. Johnson, R. Brunk und L. Hawkins. A novel geotechnical/geostatistical approach for exploration and production of natural gas from multiple geologic strata, Phase 1. Office of Scientific and Technical Information (OSTI), Mai 1991. http://dx.doi.org/10.2172/5308630.
Der volle Inhalt der QuelleBent, Jimmy. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities. Office of Scientific and Technical Information (OSTI), Mai 2014. http://dx.doi.org/10.2172/1158898.
Der volle Inhalt der Quelle