Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Natural cooling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Natural cooling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Natural cooling"
Sadov, V. V., und N. I. Kapustin. „AUTOMATED INSTALLATION FOR MILK COOLING USING A NATURAL COOLING AGENT“. Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta, Nr. 11 (2021): 116–22. http://dx.doi.org/10.53083/1996-4277-2021-205-11-116-122.
Der volle Inhalt der QuelleKemp, K. O. „Natural draught cooling towers“. Engineering Structures 19, Nr. 12 (Dezember 1997): 1057. http://dx.doi.org/10.1016/s0141-0296(97)00040-0.
Der volle Inhalt der QuelleKozlovtsev, A. P., und G. S. Korovin. „Natural cold milk cooling system“. IOP Conference Series: Materials Science and Engineering 666 (07.12.2019): 012070. http://dx.doi.org/10.1088/1757-899x/666/1/012070.
Der volle Inhalt der QuelleGupta, Vinod. „Natural Cooling Systems of Jaisalmer“. Architectural Science Review 28, Nr. 3 (September 1985): 58–64. http://dx.doi.org/10.1080/00038628.1985.9696577.
Der volle Inhalt der QuelleFisenko, S. P., A. I. Petruchik und A. D. Solodukhin. „Evaporative cooling of water in a natural draft cooling tower“. International Journal of Heat and Mass Transfer 45, Nr. 23 (November 2002): 4683–94. http://dx.doi.org/10.1016/s0017-9310(02)00158-8.
Der volle Inhalt der QuelleSong, Guoqing, Xudong Zhi, Feng Fan, Wei Wang und Peng Wang. „Cooling performance of cylinder-frustum natural draft dry cooling tower“. Applied Thermal Engineering 180 (November 2020): 115797. http://dx.doi.org/10.1016/j.applthermaleng.2020.115797.
Der volle Inhalt der QuelleDorokhov, Aleksey S., Dmitriy Yu Pavkin, Vladimir V. Ivanov und Aleksey B. Korshunov. „Energy Saving Milk Cooling Unit Using Natural Cold and Low Temperature Coolants“. Elektrotekhnologii i elektrooborudovanie v APK, Nr. 3 (20.09.2020): 3–8. http://dx.doi.org/10.22314/2658-4859-2020-67-3-3-8.
Der volle Inhalt der QuelleEbrahim, Shikha A., und Emil Pradeep. „Rapid cooling performance of zirconium rods quenched in natural seawater“. Physics of Fluids 34, Nr. 3 (März 2022): 037112. http://dx.doi.org/10.1063/5.0086524.
Der volle Inhalt der QuelleKnoblauch, Kurt, und A. E. Einert. „NATURAL COOLING OF TALL BEARDED IRIS“. HortScience 25, Nr. 8 (August 1990): 862d—862. http://dx.doi.org/10.21273/hortsci.25.8.862d.
Der volle Inhalt der QuelleShin, Jung-Chul. „HWR Shield Cooling Natural Circulation Study“. Journal of Energy Engineering 21, Nr. 3 (30.09.2012): 221–27. http://dx.doi.org/10.5855/energy.2012.21.3.221.
Der volle Inhalt der QuelleDissertationen zum Thema "Natural cooling"
Al-Hinai, Hilal Ali Zaher. „Natural Cooling Techniques For Buildings“. Thesis, Cranfield University, 1992. http://hdl.handle.net/1826/3591.
Der volle Inhalt der QuelleWorthington, D. R. E. „The cooling of electronic power supplies by natural convection“. Thesis, University of Exeter, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380691.
Der volle Inhalt der QuelleVan, Der Merwe Daniel. „Evaluation of natural draught wet-cooling tower performance uncertainties“. Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/50709.
Der volle Inhalt der QuelleENGLISH ABSTRACT: A natural draught wet-cooling tower (NDWCT) was modelled using the Merkel method with an improved energy equation as recommended by Kloppers and Kroger (2005a) - referred to as the Improved Merkel method. The improved energy equation is used for calculating the heat rejection rate of the tower and includes the energy associated with water evaporation. The sensitivity indexes of a NDWCT were calculated numerically with the Improved Merkel method model. It was found that the perfonnance of a NDWCT is most sensitive to the fill Merkel number. The "Natklos" fill test facility at Stellenbosch University was used to estimate typical uncertainties found in fill performance characteristics. The zeroth order uncertainty for the Merkel number and loss coefficient was calculated to be 0.2100 m-1 and 0.4248 m- 1 , respectively, while the first order uncertainty for the Merkel number and loss coefficient was calculated to be 0.1933 m- 1 and 0.2008 m-1 , respectively. ASME requires that the uncertainty in tower capability has to be less than 6 % for a NDWCT perfonnance test to be deemed ASME approved. Propagating typical measurement uncertainties found in NDWCT test standards and experimental data into the tower capability showed that the 6 % uncertainty limit imposed by ASME is unrealistic and too stringent. Performance curve generator (PCG) is a software package developed that generates NDWCT perfonnance curves. With these performance curves it is possible to easily and effectively adjust the off-design test results in order to detennine whether the NDWCT has met its guarantee or not.
AFRIKAANSE OPSOMMING: Die werksverrigting van 'n natuurlike trek nat koeltoring (NTNT) is gemodelleer deur gebruik te maak van die Merkel metode met 'n verbeterde energie vergelyking, soos aanbeveel deur Kloppers en Kroger (2005a) - Verbeterde Merkel metode. Die energie vergelyking word gebruik om die toring se tempo van warmteoordrag te bereken en sluit die energieverlies as gevolg van verdamping in. Die Verbeterde Merkel metode model was gebruik om die sensitiwiteits-indekse van 'n NTNT te bepaal. Die analise toon dat die toring se werksverrigting die sensitiefste is vir die pakking se Merkel getal. Die Natklos pakkingstoetsfasiliteit aan die Universiteit van Stellenbosch was gebruik om tipiese onsekerheid in die pakkingsprestasiekarakteristieke te bepaal. Die zero-orde onsekerheid in die Merkel getal en verlieskoeffisient was bereken as 0.2100 m· 1 en 0.4248 m· 1 , onderskeidelik, terwyl die eerste-orde onsekerhede bereken was as 0.1933 m·1 en 0.2008 m· 1 , onderskeidelik. Die toelaatbare onsekerheid in toringvennoe vir 'n NTNT aanvaardingstoes volgens ASME is 6 %. Deur tipes meetonsekerhede, soos gegee deur NTNT aanvaardings-toesstandaarde sowel as eksperimentele data, deur te propageer, word 'n onsekerheid veel groter as die toelaatbare 6 % gegenereer. 'n Renekaarpakket, genaamd Performance Curve Generator (PCG), is ontwikkel om werksverrigtinskurwes vir 'n NTNT te genereer. PCG se werksverrigtinskurwes maak dit moonltik om maklik te bepaal of a NTNT sy ontwerpskriterea bereik het of nie.
HEINERUD, VICTOR, und ANDRÉ SAHLSTEN. „Natural Refrigerants in Data Center Cooling with Thermosiphon Application“. Thesis, KTH, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192880.
Der volle Inhalt der QuelleÄnda sedan datorn uppfanns har det funnits ett behov av datalagring, ett behov som ökat stadigt. Detta har resulterat i en stor mängd datacenter och det finns inget som tyder på att trenden kommer ändras. Datacenter drivs av el och under 2010 var elförbrukningen för datacenter 1.3% av världens totala elanvändning. Den mest energikrävande delen av ett datacenter är de faktiska servrarna och den näst största energikrävande delen är kylsystemet, vilket i ett normalt datacenter står för två femtedelar av energianvändningen. Förutom energiförbrukningen, är kylsystemen i de flesta fall, en kylmaskin med HCFC- och HFC-köldmedier. Dessa köldmedier är dåliga för miljön eftersom HCFC har högt ODP- och GWP-värden och HFC har höga GWP-värden. Syftet med detta arbete är: A) Hitta ett sätt att göra kylsystem effektivare. Tidigare arbeten har visat att användning av frikyla från den omgivande luften är en effektiv metod för att minska det årliga elbehovet. Det finns även system som använder en två-fas termosifon för att flytta värme från servrar till den omgivande luften, vilket innebär att det inte behövs några pumpar. B) Hitta systemlösningar med naturliga köldmedier som har noll ODP och mycket låg eller noll GWP. C) Utvärdera om det finns möjlighet att återvinna spillvärme från ett datacenter till exempelvis en kontorsbyggnad. Detta arbete innehåller två system vilka modelleras matematiskt med hjälp av programvaran Engineering Equation Solver: ett direkt R744-system och ett indirekt system som använder R290 och R744. Båda systemen använder en termosifonslinga som är ansluten till en kondensor för att kunna använda frikyla upp till en viss brytpunktstemperatur och det resterande behovet täcks av en kylmaskin. Dessa system matchas sedan mot temperaturprofiler för fem städer, Stockholm, Paris, Phoenix, Tokyo och Madrid, för att se hur många timmar av året som frikylakan användas. Systemen utvärderas sedan utifrån både energiförbrukning och kostnad. För att kunna jämföra dessa system mot ett befintligt kylsystem modelleras ett referenssystem med R22 som kylmedel, vilket är det vanligaste köldmediet i världen idag för kylning av datacenter. Resultaten visar att ett direkt R744-system eller ett indirekt system med R290/R744, båda med en termosifonslinga, är både energieffektivare och ekonomiskt fördelaktigare jämfört med referenssystemet. Energibesparingen uppgår till 88% och de totala årliga kostnadsbesparingarna uppgår till 69%. Power Usage Effectiveness värdet reduceras med upp till 6% och om enbart hänsyn tas till nedkylning, upp till 8%. Dessa besparingar är för en optimerad kondensor med en flänsyta på 2000 m2 samt 6 stycken fläktar då kondensatorn har en brytpunktstemperatur på 22° C. Det indirekta R290/R744-systemet är det bästa i alla städer vad gäller energieffektivitet. Båda systemen är också väl lämpade för användning med värmeåtervinning. Årsvärmefaktorn för värmeåtervinningen är mellan 8.3 och 15.2, vilket är en följd av den höga förångningstemperaturen och den låga framledningstemperaturen till värmesystemet.
Gallarotti, Maura. „CFD ANALYSIS ON THE COOLING OF NON GUIDED OIL NATURAL AIR NATURAL TYPES OF TRANSFORMERS“. Thesis, KTH, Mekanik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-203970.
Der volle Inhalt der QuelleReuter, Hanno Carl Rudolf. „Performance evaluation of natural draught cooling towers with anisotropic fills“. Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5440.
Der volle Inhalt der QuelleENGLISH ABSTRACT: In the design of a modern natural draught wet-cooling tower (NDWCT), structural and performance characteristics must be considered. Air flow distortions and resistances must be minimised to achieve optimal cooling which requires that the cooling towers must be modelled two-dimensionally and ultimately threedimensionally to be optimised. CFD models in literature are found to be limited to counterflow cooling towers packed with film fill, which is porous in one direction only and generally has a high pressure drop, as well as purely crossflow cooling towers packed with splash fill. This simplifies the analysis considerably as the effects of flow separation at the air inlet are minimised and fill performance is determined using the method of analysis originally employed to determine the fill performance characteristics from test data. Many counterflow cooling towers are, however, packed with trickle and splash fills which have anisotropic flow resistances, which means the fills are porous in all flow directions and thus air flow can be oblique through the fill, particularly near the cooling tower air inlet. This provides a challenge since available fill test facilities and subsequently fill performance characteristics are limited to purely counter- and crossflow configuration. In this thesis, a CFD model is developed to predict the performance of NDWCTs with any type of spray, fill and rain zone configuration, using the commercial code FLUENT®. This model can be used to investigate the effects of different: atmospheric temperature and humidity profiles, air inlet and outlet geometries, air inlet heights, rain zone drop size distributions, spray zone performance characteristics, variations in radial water loading and fill depth, and fill configurations or combinations on cooling tower performance, for optimisation purposes. Furthermore the effects of damage or removal of fill in annular sections and boiler flue gas discharge in the centre of the tower can be investigated. The CFD modelling of NDWCTs presents various options and challenges, which needed to be understood and evaluated systematically prior to the development of a CFD model for a complete cooling tower. The main areas that were investigated are: spray and rain zone performance modelling by means of an Euler-Lagrangian model; modelling of air flow patterns and flow losses; modelling of fill performance for oblique air flow; modelling of air pressure and temperature profiles outside and inside the cooling tower. The final CFD results for the NDWCT are validated by means of corresponding one-dimensional computational model data and it is found that the performance of typical NDWCTs can be enhanced significantly by including protruding platforms or roundings at the air inlet, reducing the mean drop size in the rain zone, radially varying the fill depth and reducing the air inlet height.
AFRIKAANSE OPSOMMING: By die ontwerp van ‘n moderne natuurlike trek nat koeltoring (NTNK), moet strukturele en werkverrigtings eienskappe in ag geneem word. Wanverdeelde lugvloei en vloeiweerstande moet geminimaliseer word om optimale verkoeling te bewerkstellig, wat vereis dat die koeltorings twee-dimensioneel en uiteindelik driedimensioneel gemodelleer moet word om hulle te kan optimeer. Dit is gevind dat berekeningsvloeidinamika (BVD of “CFD” in engels) modelle in die literatuur, beperk is tot teenvloei koeltorings gepak met film tipe pakking, wat net in een vloeirigting poreus is en boonop gewoonlik ook ‘n hoë drukval het, sowel as suiwer dwarsvloei koeltorings met spatpakking. Hierdie vergemaklik die analise aansienlik omdat die effekte van vloeiwegbreking by die luginlaat verklein word en die pakking se werkverrigtingsvermoë bereken kan word met die analise metode wat oorspronklik gebruik is om die pakkingseienskappe vanaf toets data te bepaal. Baie teenvloei koeltorings het egter drup- (“trickle”) of spatpakkings met anisotropiese vloeiweerstand, wat beteken dat die pakking poreus is in alle vloeirigtings en dat die lug dus skuins deur die pakking kan vloei, veral naby die koeltoring se lug inlaat. Hierdie verskaf ‘n uitdaging aangesien beskikbare pakking toetsfasiliteite, en dus ook pakking karakteristieke, beperk is tot suiwer teenvloei en dwarsvloei konfigurasie. ‘n BVD model word in hierdie tesis ontwikkel wat die werkverrigtingsvermoë van NTNK’s kan voorspel vir enige sproei, pakking en reënsone konfigurasie deur van die kommersiële sagteware FLUENT® gebruik te maak. Hierdie model kan gebruik word om die effekte van verskillende: atmosferiese temperatuur- en humiditeitsprofiele, lug inlaat en uitlaat geometrië, lug inlaat hoogtes, reënsone druppelgrootteverdelings, sproeisone werkverrigtingskarakteristieke, variasie in radiale waterbelading en pakking hoogte, en pakking konfigurasies of kombinasies op koeltoringvermoë te ondersoek vir optimerings doeleindes. Verder kan die effekte van beskadiging of verwydering van pakking in annulêre segmente, en insluiting van ‘n stoomketel skoorsteen in die middel van die toring ondersoek word. Die BVD modellering van NTNK bied verskeie moontlikhede en uitdagings, wat eers verstaan en sistematies ondersoek moes word, voordat ‘n BVD model van ‘n algehele NTNK ontwikkel kon word. Die hoof areas wat ondersoek is, is: sproeien reënsone modellering mbv ‘n Euler-Lagrange model; modellering van lugvloeipatrone en vloeiverliese; modellering van pakking verrigting vir skuins lugvloeie; modellering van lugdruk- en temperatuurprofiele buite en binne in die koeltoring. Die BVD resultate word mbv van data van ‘n ooreenstemmende eendimensionele berekeningsmodel bevestig en dit is bevind dat die werkverrigting van ‘n tipiese NTNK beduidend verbeter kan word deur: platforms wat uitstaan of rondings by die luginlaat te installeer, die duppelgrootte in die reënsone te verklein, die pakkingshoogte radiaal te verander, en die luginlaathoogte te verlaag.
Aboul, Naga Mohsen M. „Natural ventilation and cooling by evaporation in hot-arid climates“. Thesis, University of Leeds, 1990. http://etheses.whiterose.ac.uk/4043/.
Der volle Inhalt der QuelleEhlers, Frederik Coenrad. „Condition-based monitoring of natural draught wet-cooling tower performance-related parameters“. Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/17904.
Der volle Inhalt der QuelleENGLISH ABSTRACT: The meteorological conditions at Eskom’s Majuba Power Station are measured, evaluated and trended in this dissertation. The results are used to evaluate the current natural draught wet-cooling tower (NDWCT) design- and performance test specifications and to compare these to the original design- and performance test specifications. The evaluation reveals that the design parameters for the NDWCTs at Majuba Power Station, a cooling system that was originally designed optimally, could have been determined differently and arguably more accurately by using the wet-bulb temperature (Tawb) as the main design variable instead of the dry-bulb temperature (Ta). A new technique to determine optimal NDWCT design and performance test conditions is consequently proposed. In order to satisfy the atmospheric conditions required for a successful NDWCT performance test, it is also proposed that the tests be undertaken between 12:00 and 14:00 during Summer. It is found that the NDWCT inlet Tawb, measured at specific heights, does not compare well to the far-field Tawb measured at the same heights when a Tawb accuracy of 0.1 K is required. It is proposed that a more representative far-field Tawb measuring height of 10 m should be used in future NDWCT designs as the NDWCT design temperature reference height. The industry-standard reference height should, however, still be used during temperature profile calculations. A parametric study of the water-steam cycle and wet-cooling system at Majuba indicates that during full load conditions, the generated output (Pst) is primarily dependent on the condenser saturation pressure (pc). The latter is reliant on Tawb, the temperature lapse rate (LRT) that is represented by the temperature profile exponent (bT), the main cooling water flow rate (mcw), atmospheric pressure (pa), and wind speed (VW). Using historical plant data relatively simple methods, enabling the quick and effective determination of these relationships, are proposed. The plant-specific and atmospheric parameters required for these analyses are also tabulated. Two NDWCT effectiveness models, one mathematical (Kröger, 1998) and one statistical artificial neural network (ANN) model are presented and evaluated. ANNs, which are not often used to evaluate NDWCT effectiveness, provide accurate NDWCT temperature approach results within 0.5 K of measured values for varying dependent variables. This motivates that an ANN, if set up and used correctly, can be an effective condition-monitoring tool and can be used to improve the accuracy of more empirical NDWCT performance models. The one-dimensional mathematical effectiveness model provides accurate results under NDWCT design conditions. The dependency of Majuba’s NDWCT to the rain zone mean drop diameter (dd) is evaluated by means of the one-dimensional mathematical model. A reduction in dd from 0.0052 m to 0.0029 m can reduce the NDWCT re-cooled water temperature (Tcwo) so that the rated pc is reduced by 0.15 kPa, which relates to a combined financial saving during peak and off-peak periods of R1.576M in 2013 and R1.851M in 2016. Similar improvements can result in higher savings at other wet-cooled stations in the Eskom fleet due to less optimally-designed wet-cooling systems. The proposed techniques should be considered in future economic evaluations of wet-cooling system improvements at different power stations.
AFRIKAANSE OPSOMMING: Die meteorologiese toestande by Eskom se Majuba-kragstasie is deur die navorser gemeet en -evalueer. Die resultate word gebruik om die Natuurlike-trek, Nat koeltoring (NTNKT) se ontwerp- en werkverrigting toetsspesifikasies te evalueer en vergelyk met die oorspronklike toetsspesifikasies. Die resultate dui daarop dat die ontwerpsparameters vir die NTNKTs by Majuba-kragstasie, ‘n verkoelings-sisteem wat aanvanklik optimaal ontwerp is, op ‘n ander, selfs meer akkurate manier bepaal kon word deur die natbol-temperatuur (Tawb) te gebruik as die hoof-ontwerpsparameter inplaas van die droëbol temperatuur (Ta).’n Nuwe tegniek wat gebruik kan word om akkurate NTNKT ontwerp- en werkverrigting toetsspesifikasies te bepaal word voorgestel. Die tydperk vir die mees optimale atmosferiese toestande, wanneer NTNKT-toetse uitgevoer moet word, word vasgestel as tussen 12:00 en 14:00 tydens Somermaande. Dit word bewys, vir ’n Tawb akkuraatheid van 0.1 K, dat die NTNKT inlaat-Tawb, gemeet by verskillende hoogtes, nie vergelykbaar is met Tawb wat ver van die NTNKT af op dieselfde hoogtes gemeet word nie. ’n Meer aanvaarbare hoogte van 10 m word voorgestel as die NTNKT ontwerpstemperatuur verwysingshoogte vir toekomstige NTNKT ontwerpe wanneer die Tawb ver van die NTNKT af meet word. Die industrie-standaard temperatuur verwysingshoogte moet wel steeds gebruik word tydens temperatuur-profielberekeninge. ’n Parametriese studie van die turbine se water-stoom siklus en die nat-verkoelingstelsel by Majuba dui daarop dat die generator se uitset (Pst) hoofsaaklik afhanklik is van die kondensator se druk (pc) gedurende vol-vrag toestande. Druk (pc) is weer afhanklik van Tawb, die temperatuur vervaltempo (LRT) wat voorgestel word deur die temperatuur profiel eksponent (bT), die verkoelingswater-vloeitempo (mcw), atmosferiese druk (pa) en windspoed (VW). Deur die gebruik van historiese data word redelike eenvoudige metodes voorgestel om dié verhoudings doeltreffend te bepaal. Die atmosferiese- en stasie-spesifieke parameters wat benodig word vir dié ontleding is ook getabuleer. Twee modelle vir NTNKT-effektiweit, ’n wiskundige (gebaseer op Kröger, 1998) en statistiese kunsmatige neurale-netwerk (KNN) model, word aangebied en geëvalueer. KNNe, wat nie gereeld gebruik word om NTNKTe se effektiwiteit te evalueer nie, lewer akkurate NTNKT temperatuur-benadering resultate binne 0.5 K van die gemete resultate vir wisselende afhanklike parameters. Dié resultate motiveer dat ’n KNN wat korrek opgestel is doeltreffend gebruik kan word om die toestand van NTNKTs te bepaal en om die akkuraatheid van ander NTNKT-modelle te verbeter. Die eendimensionele, wiskundige model lewer akkurate resultate onder NTNKT ontwerpspesifikasies. ’n Wiskundige NTNKT-model word gebruik om die afhanklikheid van Majubakragstasie se NTNKTe tot die reënsone druppelgrootte (dd) te bereken. 'n Vermindering in dd van 0,0052 tot 0,0029 m kan die NTNKT se afgekoelde watertemperatuur (Tcwo), van só 'n aard verlaag dat pc verminder met 0,15 kPa. Só kan ’n gesamentlike vol- en gedeeltelike vrag finansiële besparing van R1.576M in 2013 en R1.851M in 2016 behaal word. Soortgelyke verbeterings aan verkoelingstelsels sal lei tot meer en hoër besparings by ander Eskom nat-verkoelde stasies. Dié tegnieke moet in ag geneem word tydens toekomstige ekonomiese evaluasies van verbeterings tot nat-verkoelingstelsels by ander kragstasies.
Villarreal, Guerrero Federico. „Enhanced Greenhouse Cooling Strategy with Natural Ventilation and Variable Fogging Rates“. Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/202717.
Der volle Inhalt der QuelleRai, Roby. „Cooling multi-family residential units using natural ventilation in the Central U.S“. Thesis, Kansas State University, 2016. http://hdl.handle.net/2097/34565.
Der volle Inhalt der QuelleDepartment of Architecture
Michael D. Gibson
The use of Natural Ventilation (NV) to cool buildings in mixed climates can conserve significant cooling energy. In mixed climates it is particularly important during the fall and the spring, where appropriately designed buildings should use very little energy for heating or cooling. Natural ventilation is also important in residential buildings, where internal heat gain can be managed, making cooling by natural ventilation easier. Earlier investigations have clearly shown the economic, social, and health benefits of the use of NV in built environment. Studies have shown that increased airflow or air-speed during ventilation can bring a significant rise in comfort range which further reduces the cooling energy required to maintain comfort. The climatic data of the central United States (U.S.) shows that the availability of frequent high speed wind and favorable seasonal humidity conditions make natural ventilation feasible in late spring and early fall, where NV can offset most of the cooling demand for a home or multifamily residential unit, though it is not possible to maintain thermal comfort during the entire summer with NV alone. In mixed climates, NV for multifamily residential units has not been investigated thoroughly. According to 2009 International Residential Code, multifamily residential buildings are typically designed to use a code minimum amount of operable or ventilating windows, 4% of the floor area being ventilated, while also using lightweight construction methods (such as wood framing) that is prone to fast thermal response during the overheated periods of the year. While climate may favor the use of NV in these building types, the sizing of windows and the building construction type limit the potential to save energy with NV. This study hypothesized that the maximum benefits from NV in the climate of the central U.S. requires further optimization of window openings beyond the energy code minimum, and a construction system incorporating mass that can slow thermal response during overheated periods. During the study, the climatic data of the central US was scrutinized to understand the most suitable time frames where NV could be applied in order to maintain indoor thermal comfort in various construction systems in residential buildings: mainly lightweight using wood framing, and heavier construction using concrete and masonry. The location of the housing unit, first level or second level, was also examined to account for the differences in thermal gains and losses as a result of ground coupling and additional heat gain from the roof. Further, computational fluid dynamics evaluated the comfort achieved with different ventilation areas. Change in comfort hours by using NV tested the practicability of the use of NV to maintain indoor thermal comfort for different scenarios. The study concluded with design recommendations for building orientation, operable window size, and construction type as these factors relate to thermal comfort and the optimization of multifamily residential buildings to utilize NV for energy savings in the U.S.
Bücher zum Thema "Natural cooling"
Ford, Brian, Rosa Schiano-Phan und Juan A. Vallejo. The Architecture of Natural Cooling. Second edition. | Abingdon, Oxon ; New York : Routledge, 2020. | First edition published by PHDC Press 2010.: Routledge, 2019. http://dx.doi.org/10.4324/9781315210551.
Der volle Inhalt der QuelleSweetser, Richard S. The fundamentals of natural gas cooling. Lilburn, GA: Fairmont Press, Inc., 1996.
Den vollen Inhalt der Quelle findenMeeting, American Society of Mechanical Engineers Winter. Natural and mixed convection in electronic equipment cooling. New York: American Society of Mechanical Engineers, 1988.
Den vollen Inhalt der Quelle findenMcHugh, P. R. Natural circulation cooling in U.S. pressurized water reactors. Washington, DC: Division of Systems Research, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1992.
Den vollen Inhalt der Quelle finden1964-, Matsui Kazue, Hrsg. Kūrā-irazu no suzushii seikatsu 99 no waza. Tōkyō-to Shinjuku-ku: Komonzu, 2011.
Den vollen Inhalt der Quelle findenParareda, Guillermo Yáñez. Arquitectura solar: Aspectos pasivos, bioclimatismo e iluminación natural. Madrid: MOPU, Dirección General para la Vivienda y Arquitectura, 1988.
Den vollen Inhalt der Quelle findenJohnson, Olga S. Determination of natural heating and cooling of intake air in underground mines. Sudbury, Ont: Laurentian University, School of Graduate Studies, 2004.
Den vollen Inhalt der Quelle findenDavis, G. de Vahl. Three-dimensional natural convection in a cavity with localised heating and cooling. Kensington, N.S.W: University of New South Wales, School of Mechanical and Industrial Engineering, 1988.
Den vollen Inhalt der Quelle findenL, Haggard Kenneth, Hrsg. Passive solar architecture: Heating, cooling, ventilation, daylighting and more using natural flows. White River Junction, Vt: Chelsea Green Pub., 2010.
Den vollen Inhalt der Quelle findenWheeler, C. L. Review of the natural circulation effect in the Vermont Yankee spent-fuel pool. Washington, DC: Division of Engineering and Systems Technology, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, 1988.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Natural cooling"
Aquaprox. „Natural Water“. In Treatment of Cooling Water, 7–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01985-2_2.
Der volle Inhalt der QuelleAquaprox. „Analysis of Natural Water“. In Treatment of Cooling Water, 13–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01985-2_3.
Der volle Inhalt der QuelleWang, Xidong. „Typhoon and Sea Surface Cooling“. In Exploring Natural Hazards, 75–86. Boca Raton, FL : CRC Press, 2018.: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9781315166858-3.
Der volle Inhalt der QuelleShuster, William W. „Cooling of Thermal Discharges“. In Water Resources and Natural Control Processes, 107–38. Totowa, NJ: Humana Press, 1986. http://dx.doi.org/10.1007/978-1-4612-4822-4_3.
Der volle Inhalt der QuelleFord, Brian, Rosa Schiano-Phan und Juan A. Vallejo. „Origins and Opportunities“. In The Architecture of Natural Cooling, 2–23. Second edition. | Abingdon, Oxon ; New York : Routledge, 2020. | First edition published by PHDC Press 2010.: Routledge, 2019. http://dx.doi.org/10.4324/9781315210551-1.
Der volle Inhalt der QuelleFord, Brian, Rosa Schiano-Phan und Juan A. Vallejo. „Case Study 2“. In The Architecture of Natural Cooling, 194–211. Second edition. | Abingdon, Oxon ; New York : Routledge, 2020. | First edition published by PHDC Press 2010.: Routledge, 2019. http://dx.doi.org/10.4324/9781315210551-10.
Der volle Inhalt der QuelleFord, Brian, Rosa Schiano-Phan und Juan A. Vallejo. „Case Study 3“. In The Architecture of Natural Cooling, 212–23. Second edition. | Abingdon, Oxon ; New York : Routledge, 2020. | First edition published by PHDC Press 2010.: Routledge, 2019. http://dx.doi.org/10.4324/9781315210551-11.
Der volle Inhalt der QuelleFord, Brian, Rosa Schiano-Phan und Juan A. Vallejo. „Case Study 4“. In The Architecture of Natural Cooling, 224–37. Second edition. | Abingdon, Oxon ; New York : Routledge, 2020. | First edition published by PHDC Press 2010.: Routledge, 2019. http://dx.doi.org/10.4324/9781315210551-12.
Der volle Inhalt der QuelleFord, Brian, Rosa Schiano-Phan und Juan A. Vallejo. „Case Study 5“. In The Architecture of Natural Cooling, 238–51. Second edition. | Abingdon, Oxon ; New York : Routledge, 2020. | First edition published by PHDC Press 2010.: Routledge, 2019. http://dx.doi.org/10.4324/9781315210551-13.
Der volle Inhalt der QuelleFord, Brian, Rosa Schiano-Phan und Juan A. Vallejo. „Case Study 6“. In The Architecture of Natural Cooling, 252–67. Second edition. | Abingdon, Oxon ; New York : Routledge, 2020. | First edition published by PHDC Press 2010.: Routledge, 2019. http://dx.doi.org/10.4324/9781315210551-14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Natural cooling"
Bhosale, Praddyumn, Ashutosh Bhosale, Ajit Kulkarni, Navnath Jagtap und Uday Karvekar. „Natural Air Cooling System“. In National Conference on Relevance of Engineering and Science for Environment and Society. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.118.7.
Der volle Inhalt der QuelleDutkiewicz, R. K. „NATURAL DRAUGHT SPRAY COOLING TOWERS“. In International Heat Transfer Conference 3. Connecticut: Begellhouse, 2019. http://dx.doi.org/10.1615/ihtc3.600.
Der volle Inhalt der QuelleKirez, O., B. Sumer und Bora Yazici. „Turbulent natural convection cooling of electronics using liquid coolant“. In THMT-15. Proceedings of the Eighth International Symposium On Turbulence Heat and Mass Transfer. Connecticut: Begellhouse, 2015. http://dx.doi.org/10.1615/ichmt.2015.thmt-15.790.
Der volle Inhalt der QuelleWits, Wessel W., Davoud Jafari, Yannick Jeggels, Sjoerd van de Velde, Daniel Jeggels und Norbert Engelberts. „Freeform-Optimized Shapes for Natural-Convection Cooling“. In 2018 24rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC). IEEE, 2018. http://dx.doi.org/10.1109/therminic.2018.8593305.
Der volle Inhalt der QuelleBjazic, Toni, Fetah Kolonic und Petar Crnosija. „Experimental Identification of Natural Gas Cooling Process“. In IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics. IEEE, 2006. http://dx.doi.org/10.1109/iecon.2006.347482.
Der volle Inhalt der QuelleYan, Jun, und Zhen-Guo Li. „Immersion Natural Circulation Evaporative Cooling Server Cluster“. In 2016 International Conference on Computer Engineering and Information Systems. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/ceis-16.2016.96.
Der volle Inhalt der QuelleHo, Mark K. M., Guillaume Bois, Dave Wassink und Guan Heng Yeoh. „NATURAL CONVECTION COOLING OF HOT MOLYBDENUM PLATES“. In Proceedings of CHT-08 ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2008. http://dx.doi.org/10.1615/ichmt.2008.cht.2440.
Der volle Inhalt der QuelleShipkovs, Janis, Peteris Shipkovs, Andrejs Snegirjovs, Kristina Ļebedeva, Galina Kashkarova, Lana Migla und Vidas Lekavicius. „Optimization of Solar Cooling System in Latvia“. In Advanced HVAC and Natural Gas Technologies. Riga: Riga Technical University, 2015. http://dx.doi.org/10.7250/rehvaconf.2015.027.
Der volle Inhalt der QuelleMaaty, Talal Abou El. „Natural convection cooling for LEU irradiated fuel plates“. In 2010 3rd International Conference on Thermal Issues in Emerging Technologies Theory and Applications (ThETA). IEEE, 2010. http://dx.doi.org/10.1109/theta.2010.5766424.
Der volle Inhalt der QuelleSecnik, Matej, Brane Sirok, Marko Hocevar, Tomasz Barszcz und Jure Smrekar. „CTProfiler measurement method for natural draft cooling towers“. In 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2019. http://dx.doi.org/10.1109/appeec45492.2019.8994666.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Natural cooling"
Brown, William T., und III. Performance Analysis of Natural Gas, Cooling Technology at Air Force Bases. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1998. http://dx.doi.org/10.21236/ada359312.
Der volle Inhalt der QuelleSohn, Chang W., und Jorge L. Alvarado. Natural Gas-Electric Hybrid Cooling System for Army Facilities - A Decision Tool. Fort Belvoir, VA: Defense Technical Information Center, Juli 2002. http://dx.doi.org/10.21236/ada406300.
Der volle Inhalt der QuelleBuckner, M. R. Natural Convection and Boiling for Cooling SRP Reactors During Loss of Circulation Conditions. Office of Scientific and Technical Information (OSTI), Juni 2001. http://dx.doi.org/10.2172/782817.
Der volle Inhalt der QuellePeter A. Pryfogle. Investigation of Microbial Respirometry for Monitoring Natural Sulfide Abatement in Geothermal Cooling Tower Basins. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/966166.
Der volle Inhalt der QuelleBrown, William T., und III. Performance Analysis of Natural Gas Cooling Technology at Warner-Robins AFB, GA, Fiscal Year 2000. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada388629.
Der volle Inhalt der QuelleMulchandani, Anjali, Meagan Mauter, Alison Fritz und Eric Grol. Impact of Non-Steady State Operation on Cooling Water Consumption at Coal- and Natural Gas-Fired Power Plants. Office of Scientific and Technical Information (OSTI), Januar 2021. http://dx.doi.org/10.2172/1901808.
Der volle Inhalt der QuelleWillits, Daniel H., Meir Teitel, Josef Tanny, Mary M. Peet, Shabtai Cohen und Eli Matan. Comparing the performance of naturally ventilated and fan-ventilated greenhouses. United States Department of Agriculture, März 2006. http://dx.doi.org/10.32747/2006.7586542.bard.
Der volle Inhalt der QuelleKawaji, Masahiro, Dinesh Kalaga, Sanjoy Banerjee, Richard R. Schultz, Hitesh Bindra und Donals M. McEligot. Experimental Investigation of Forced Convection and Natural Circulation Cooling of a VHTR Core under Normal Operation and Accident Scenarios. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569844.
Der volle Inhalt der QuelleFarmer, M. T., D. J. Kilsdonk, C. P. Tzanos, S. Lomperski, R. W. Aeschlimann und D. Pointer. Topical report: Natural convection shutdown heat removal test facility (NSTF) evaluation for generating additional reactor cavity cooling system (RCCS) data. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/925335.
Der volle Inhalt der QuelleBrown, Willliam T., und III. Performance Analysis of Natural Gas Cooling Technology at Air Force Bases Youngstown-Warren ARS and Warner-Robins AFB, Fiscal Year 1999. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1999. http://dx.doi.org/10.21236/ada371555.
Der volle Inhalt der Quelle