Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Natural background radiation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Natural background radiation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Natural background radiation"
Sivintsev, Yu V. „Natural background radiation“. Soviet Atomic Energy 64, Nr. 1 (Januar 1988): 55–67. http://dx.doi.org/10.1007/bf01124007.
Der volle Inhalt der QuelleDOLCHINKOV, Nikolay Todorov. „SOURCES OF NATURAL BACKGROUND RADIATION“. Security and Defence Quarterly 16, Nr. 3 (28.09.2017): 40–51. http://dx.doi.org/10.35467/sdq/103183.
Der volle Inhalt der QuelleAl-Azmi, Darwish, N. Karunakara und Amidu O. Mustapha. „Teaching about natural background radiation“. Physics Education 48, Nr. 4 (20.06.2013): 506–11. http://dx.doi.org/10.1088/0031-9120/48/4/506.
Der volle Inhalt der QuelleWENG, PAO-SHAN, TIEH-CHI CHU und CHIN-FANG CHEN. „Natural Radiation Background in Metropolitan Taipei.“ Journal of Radiation Research 32, Nr. 2 (1991): 165–74. http://dx.doi.org/10.1269/jrr.32.165.
Der volle Inhalt der QuelleStone, J. M., R. D. Whicker, S. A. Ibrahim und F. W. Whicker. „SPATIAL VARIATIONS IN NATURAL BACKGROUND RADIATION“. Health Physics 76, Nr. 5 (Mai 1999): 516–23. http://dx.doi.org/10.1097/00004032-199905000-00008.
Der volle Inhalt der QuelleShahbazi-Gahrouei, Daryoush, Samaneh Setayandeh und Mehrdad Gholami. „A review on natural background radiation“. Advanced Biomedical Research 2, Nr. 1 (2013): 65. http://dx.doi.org/10.4103/2277-9175.115821.
Der volle Inhalt der QuelleThorne, M. C. „Background radiation: natural and man-made“. Journal of Radiological Protection 23, Nr. 1 (01.03.2003): 29–42. http://dx.doi.org/10.1088/0952-4746/23/1/302.
Der volle Inhalt der QuelleAl-Khawlany, AbduHamoud, AR Khan und JM Pathan. „Review on studies in natural background radiation“. Radiation Protection and Environment 41, Nr. 4 (2018): 215. http://dx.doi.org/10.4103/rpe.rpe_55_18.
Der volle Inhalt der QuelleLin, Yu-Ming, Ching-Jiang Chen und Pei-Hou Lin. „Natural background radiation dose assessment in Taiwan“. Environment International 22 (Januar 1996): 45–48. http://dx.doi.org/10.1016/s0160-4120(96)00087-6.
Der volle Inhalt der QuelleTracy, B. L., E. G. Letourneau, R. G. McGregor und W. B. Walker. „Variations in natural background radiation across Canada“. Environment International 22 (Januar 1996): 55–60. http://dx.doi.org/10.1016/s0160-4120(96)00089-x.
Der volle Inhalt der QuelleDissertationen zum Thema "Natural background radiation"
Berlivet, Justine. „Rôle des expositions aux radiations ionisantes naturelles dans le risque de leucémie aiguë et de tumeur cérébrale chez l’enfant en France métropolitaine“. Electronic Thesis or Diss., Université Paris Cité, 2021. http://www.theses.fr/2021UNIP5244.
Der volle Inhalt der QuelleHigh-dose ionizing radiation (IR) have been classified as carcinogenic to humans by the IARC. This work aimed to further investigate the role of natural background radiation (NBR), which are present at lower doses, in risk of childhood acute leukemia (AL) and central nervous system (CNS) tumors, the most common childhood cancer types. Recent studies have moslty considered the risk of AL, with several design, but results are not concordant. The French population-based case-control study did not show association between childhood AL and NBR level (gamma radiation and radon) in the municipality of residence at cancer diagnosis. Firstly, this manuscript had the objective to consider the role of NBR exposure at birth. There are fewer studies about CNS tumors. For the first time, we have examined the association between the incidence of childhood CNS tumors and NBR levels in France mainland, by considering the municipality of residence at diagnosis. We conducted two studies based on the National Register of Childhood Cancer. This database gather all the cancer cases diagnosed in children in France mainland, since 1990 for AL and 2000 for solid tumors (including CNS tumors). We estimated precisely the NBR exposure all over France thanks to geostatistical methods taking account of numerous NBR measures and geological information (Institut of Radioprotection and Nuclear Safety). In this way, we evatuated contrasts of incidence rate ratios regarding variations of NBR levels in the french municipalities, setting up Poisson regression models. NBR exposures have been considered one at a time, jointly, cumulatively and, in an exploratory analysis, considering their biological impact. This question have not been ever explored regarding CNS tumors. We included 6 059 AL cases born and diagnosed between 1990 and 2000, and we did not find association between gamma radiation or radon exposure, in the municipality of residence at birth, and risk of AL. Conclusions by AL subtypes were similar. We did not observe association between NBR levels and the risk of CNS tumors, considered as a whole, taking account of all the cases diagnosed between 2000 and 2012 (5 471 cases). However, results support a positive association between gamma radiation level in the municipality of residence at diagnosis and the incidence rate of pilocytic astrocytomas, a type of non-malignant tumor common CNS tumor in childhood, very rare in adulthood. A 12% increase in incidence rate was observed for an increase of 50 nSv/h increase in gamma radiation level. We used high quality data, based on validated models considering measured and precisely geolocated exposures, all over a territory with a large range of NBR exposure. The number of cases was sufficient to distinguish AL and CNS tumors subtypes. In mainland France, we did not observe any association between NBR exposure and the risk of childhood AL, considering the window of exposure around diagosis or around birth, although the perinatal period is commonly considered as a high radiosusceptibility time span. The association that we noticed between pilocytic astrocytomas and gamma radiation level in the municipality of residence at birth was still observed in several sensitivity analysis. Different designs were used in studies on NBR and childhood cancers studies, based on high quality incidence data and validated NBR exposure models, have shown discordant results : an association between gamma rays and incidence rate of AL was found in the UK and in Switzeland, there was no association in Germany or in France, as we show in this thesis work. The consideration of other factors of geographical variability of childhood cancers incidence may precise help to understand the heterogeneity between results. There are fewer studies about CNS tumours and our results need to be replicated. Attention should be paid to CNS tumor subtypes, since their etiology might be different
Noncolela, Sive Professor. „Calibration of a NaI (Tl) detector for low level counting of naturally occurring radionuclides in soil“. University of the Western Cape, 2011. http://hdl.handle.net/11394/5426.
Der volle Inhalt der QuelleThe Physics Department at the University of the Western Cape and the Environmental Physics group at iThemba labs have been conducting radiometric studies on both land and water. In this study a 7.5 cm X 7.5 cm NaI (Tl) detector was used to study activity concentrations of primordial radionuclides in soil and sand samples. The detector and the sample were placed inside a lead castle to reduce background in the laboratory from the surroundings such as the wall and the floor. The samples were placed inside a 1 L Marinelli beaker which surrounds the detector for better relative efficiency as almost the whole sample is exposed to the detector. Additional lead bricks were placed below the detector to further reduce the background by 20%. The NaI detector is known to be prone to spectral drift caused by temperature differences inside and around the detector. The spectral drift was investigated by using a ¹³⁷Cs source to monitor the movements in the 662 keV peak. The maximum centroid shift was about 4 keV (for a period of 24 hours) which is enough to cause disturbances in spectral fitting. There was no correlation between the centroid shift and small room temperature fluctuations of 1.56 ºC. A Full Spectrum Analysis (FSA) method was used to extract the activity concentrations of ²³⁸U, ²³²Th and ⁴⁰K from the measured data. The FSA method is different from the usual Windows Analysis (WA) as it uses the whole spectrum instead of only putting a ‘window’ around the region of interest to measure the counts around a certain energy peak. The FSA method uses standard spectra corresponding to the radionuclides being investigated, and is expected to have an advantage when low-activity samples are measured. The standard spectra are multiplied by the activity concentrations and then added to fit the measured spectrum. Accurate concentrations are then extracted using a chi-squared (χ²) minimization procedure. Eight samples were measured in the laboratory using the NaI detector and analyzed using the FSA method. The samples were measured for about 24 hours for good statistics. Microsoft Excel and MATLAB were used to calculate the activity concentrations. The ²³⁸U activity concentration values varied from 14 ± 1 Bq/kg (iThemba soil, HS6) to 256 ± 10 Bq/kg (Kloof sample). The ²³²Th activity concentration values varied from 7 ± 1 Bq/kg (Anstip beach sand) to 53 ± 3 Bq/kg (Rawsonville soil #B31). The ⁴⁰K activity concentration values varied from 60 ± 20 Bq/kg (iThemba soil, HS6) to 190 ± 20 Bq/kg (Kloof sample). The χ² values also varied from sample to sample with the lowest being 12 (Anstip beach sand) and the highest (for samples without contamination of anthropogenic nuclei) being 357 (Rawsonville soil #B28). A high χ² value usually represents incomplete gain drift corrections, improper set of fitting functions, proper inclusion of coincidence summing or the presence of anthropogenic (man made) radionuclei in the source [Hen03]. Activity concentrations of ⁴⁰K, ²³²Th and ²³⁸U were measured at four stationary points on the Kloof mine dump. The fifth stationary point was located on the Southdeep mine dump. These measurements were analysed using the FSA method and fitting by "eye" the standard spectra to the measured spectra using Microsoft Excel. These values were then compared to values obtained using an automated minimization procedure in MATLAB. There was a good correlation between these results except for ²³²Th which had higher concentrations when MATLAB was used, where 16 Bq/kg was the average value in Excel and 24 Bq/kg was the average value in MATLAB.
Fitzmaurice, Matthew Blake 1988. „Developing a Methodology for Characterizing the Effects of Building Materials’ Natural Radiation Background on a Radiation Portal Monitoring System“. Thesis, 2012. http://hdl.handle.net/1969.1/148144.
Der volle Inhalt der QuelleJohnson, Christine Michelle. „Examination of natural background sources of radioactive noble gases with CTBT significance“. Thesis, 2013. http://hdl.handle.net/2152/23631.
Der volle Inhalt der Quelletext
Bücher zum Thema "Natural background radiation"
Preliminary environmental natural radioactivity mapping of Lusaka. Lusaka: Republic of Zambia, Ministry of Finance and National Planning, 2005.
Den vollen Inhalt der Quelle findenInternational Symposium on the Natural Radiation Environment (6th 1995 Montréal, Québec). The natural radiation environment VI: Sixth International Symposium on the Natural Radiation Environment (NRE-VI), Montreal, Quebec, Canada, 5-9 June 1995. Herausgegeben von Hopke Philip K. 1944-. [Oxford?]: Pergamon, 1996.
Den vollen Inhalt der Quelle findenTuttle, Robert J. The fourth source: Effects of natural nuclear reactors. Boca Raton: Universal-Publishers, 2012.
Den vollen Inhalt der Quelle findenInternational, Conference on High Levels of Natural Radiation and Radon Areas (6th 2004 Osaka Japan). High levels of natural radiation and radon areas: Radiation dose and health effects. San Diego, CA, USA: Elsevier, 2005.
Den vollen Inhalt der Quelle findenProtasevich, E. T. Natural electromagnetic background and long-lived glowing phenomena in the atmosphere. Tomsk: IPF TPU, 1995.
Den vollen Inhalt der Quelle findenGilkeson, Robert H. Natural background radiation in the proposed Illinois SSC siting area. Champaign, Ill: Illinois State Geological Survey, 1988.
Den vollen Inhalt der Quelle findenEuropean Commission. Directorate-General for Environment, Nuclear Safety, and Civil Protection., Hrsg. Radiation protection 88: Recommendations for the implementation of Title VII of the European Basic Safety Standards Directive (BSS) concerning significant increase in exposure due to natural radiation sources. Luxembourg: Office for the Official Publications of the European Communities, 1997.
Den vollen Inhalt der Quelle findenInternational Symposium on the Natural Radiation Environment (8th 2007 Rio de Janeiro , Brazil). The natural radiation environment: 8th International Symposium (NRE VIII), Buzios, Rio de Janeiro, Brazil, 7-12 October 2007. Herausgegeben von Paschoa A. S und Steinhäusler F. Melville, N.Y: American Institute of Physics, 2008.
Den vollen Inhalt der Quelle findenInternational Symposium on the Natural Radiation Environment (8th 2007 Rio de Janeiro , Brazil). The natural radiation environment: 8th International Symposium (NRE VIII), Buzios, Rio de Janeiro, Brazil, 7-12 October 2007. Herausgegeben von Paschoa A. S und Steinhäusler F. Melville, N.Y: American Institute of Physics, 2008.
Den vollen Inhalt der Quelle findenHorner, Jack K. Natural radioactivity in water supplies. Boulder: Westview Press, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Natural background radiation"
Nakagawa, Hitoshi. „History of mutation breeding and molecular research using induced mutations in Japan.“ In Mutation breeding, genetic diversity and crop adaptation to climate change, 24–39. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789249095.0003.
Der volle Inhalt der QuelleJackson Kimball, Derek F., und Dmitry Budker. „Introduction to Dark Matter“. In The Search for Ultralight Bosonic Dark Matter, 1–30. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95852-7_1.
Der volle Inhalt der QuelleObodovskiy, Ilya. „Residents of Areas With High Natural Background Radiation“. In Radiation, 631–39. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-444-63979-0.00053-7.
Der volle Inhalt der Quelle„3659 natural background radiation [n]“. In Encyclopedic Dictionary of Landscape and Urban Planning, 604. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-76435-9_8343.
Der volle Inhalt der QuelleAlpen, Edward L. „Radiation Exposure from Natural Background and Other Sources“. In Radiation Biophysics, 424–60. Elsevier, 1998. http://dx.doi.org/10.1016/b978-012053085-4/50018-1.
Der volle Inhalt der QuelleFox, Michael H. „What Comes Naturally and Not So Naturally“. In Why We Need Nuclear Power. Oxford University Press, 2014. http://dx.doi.org/10.1093/oso/9780199344574.003.0014.
Der volle Inhalt der QuelleKumar, Sanat. „Natural vs Anthropogenic Background Aerosol Contribution to the Radiation Budget over Indian Thar Desert“. In Atmospheric Aerosols - Regional Characteristics - Chemistry and Physics. InTech, 2012. http://dx.doi.org/10.5772/48722.
Der volle Inhalt der QuelleOtake, Masanori. „Genetic Risks from Exposure to the Atomic Bombs: Hiroshima and Nagasaki“. In Genetics of Cellular, Individual, Family, and Population Variability, 83–92. Oxford University PressNew York, NY, 1993. http://dx.doi.org/10.1093/oso/9780195066258.003.0005.
Der volle Inhalt der QuelleWinterton, R. H. S. „Introduction“. In Heat Transfer. Oxford University Press, 1997. http://dx.doi.org/10.1093/hesc/9780198562979.003.0001.
Der volle Inhalt der QuelleSengupta, D., A. K. Mohanty, S. K. Das und S. K. Saha. „Natural radioactivity and radiation exposure in the high background area of the Chhatrapur beach placer deposits of Orissa, India“. In Radioactivity in the Environment, 1148–51. Elsevier, 2005. http://dx.doi.org/10.1016/s1569-4860(04)07141-4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Natural background radiation"
Li, Xia, Jianguo Liu, Yanbing Dong und Juan Lin. „Experimental research on infrared radiation measurement of typical natural background“. In Fourth Seminar on Novel Optoelectronic Detection Technology and Application, herausgegeben von Weiqi Jin und Ye Li. SPIE, 2018. http://dx.doi.org/10.1117/12.2314830.
Der volle Inhalt der QuelleNagy, A., J. Renner, I. Török und R. Kavanda. „Distributions of Natural and Artificial Gamma Background Radiation in Hungary“. In 66th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2004. http://dx.doi.org/10.3997/2214-4609-pdb.3.p112.
Der volle Inhalt der QuelleEnkhbat, N., N. Norov, B. Bat-Erdene, G. Khuukhenkhuu, B. Otgooloi, Dugersuren Dashdorj, Undraa Agvaanluvsan und Gary E. Mitchell. „Study of Natural Background Radiation around Gurvanbulag Uranium Deposit Area“. In NUCLEAR PHYSICS AND APPLICATIONS: Proceedings of the First Ulaanbaatar Conference on Nuclear Physics and Applications. AIP, 2009. http://dx.doi.org/10.1063/1.3122245.
Der volle Inhalt der QuelleBastos, Rodrigo O., Carlos R. Appoloni, Anselmo Salles Paschoa und Friedrich Steinhäusler. „Modeling Background Attenuation by Sample Matrix in Gamma Spectrometric Analyses“. In THE NATURAL RADIATION ENVIRONMENT: 8th International Symposium (NRE VIII). AIP, 2008. http://dx.doi.org/10.1063/1.2991259.
Der volle Inhalt der QuelleSzkliniarz, Katarzyna. „Characteristics of natural background radiation at BSUIN and EUL Underground Laboratories“. In RAP Conference. Sievert Association, 2021. http://dx.doi.org/10.37392/rapproc.2021.09.
Der volle Inhalt der QuelleIsmailova, A. A., und N. A. Nurbaeva. „Forecasting the radiation background in the territories of Kazakhstan located near the uranium mining industries“. In VIII Vserossijskaja konferencija s mezhdunarodnym uchastiem «Mediko-fiziologicheskie problemy jekologii cheloveka». Publishing center of Ulyanovsk State University, 2021. http://dx.doi.org/10.34014/mpphe.2021-99-102.
Der volle Inhalt der QuelleYongqiang, Li, Chen Jingmin, Xiong Zhengye, Wang Wenhua, Tang Zhao, Shi Wenqing und Li Shiping. „Investigation on Thermoluminescence of Al2O3:C and LiF:Mg,Cu,P to Natural Background Radiation“. In 2012 International Conference on Biomedical Engineering and Biotechnology (iCBEB). IEEE, 2012. http://dx.doi.org/10.1109/icbeb.2012.255.
Der volle Inhalt der QuelleSzkliniarz, Katarzyna, Kinga Polaczek-Grelik, Agata Walencik-Łata und Jan Kisiel. „Measurements of natural background radiation in the underground laboratories of the BSUIN and EUL projects“. In RAD Conference. RAD Centre, 2021. http://dx.doi.org/10.21175/rad.abstr.book.2021.28.7.
Der volle Inhalt der QuelleKylivnik, Yuriy, Svyatoslav Vuchkan, Ihor Syika, Hanna Vasylyeva und Olexander Sych. „Purification of aqueous solutions from strontium ions by natural and synthetic sorbents under increased radiation background“. In RAD Conference. RAD Centre, 2021. http://dx.doi.org/10.21175/rad.abstr.book.2021.11.4.
Der volle Inhalt der QuelleTawara, Yuzuru, Shinji Hara, Kazuo Koga und Kenji Tsuji. „Application of Cloud Chambers for Heuristic Comprehension of Radiation“. In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16909.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Natural background radiation"
Corriveau, Elizabeth, Travis Thornell, Mine Ucak-Astarlioglu, Dane Wedgeworth, Hayden Hanna, Robert Jones, Alison Thurston und Robyn Barbato. Characterization of pigmented microbial isolates for use in material applications. Engineer Research and Development Center (U.S.), März 2023. http://dx.doi.org/10.21079/11681/46633.
Der volle Inhalt der QuelleButterweck, Gernot, Alberto Stabilini, Benno Bucher, David Breitenmoser, Ladislaus Rybach, Cristina Poretti, Stéphane Maillard et al. Aeroradiometric measurements in the framework of the swiss exercise ARM23. Paul Scherrer Institute, PSI, März 2024. http://dx.doi.org/10.55402/psi:60054.
Der volle Inhalt der Quelle