Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Narrow band gap.

Zeitschriftenartikel zum Thema „Narrow band gap“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Narrow band gap" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Cui, Qiuhong, und Guillermo C. Bazan. „Narrow Band Gap Conjugated Polyelectrolytes“. Accounts of Chemical Research 51, Nr. 1 (14.12.2017): 202–11. http://dx.doi.org/10.1021/acs.accounts.7b00501.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Henson, Zachary B., Gregory C. Welch, Thomas van der Poll und Guillermo C. Bazan. „Pyridalthiadiazole-Based Narrow Band Gap Chromophores“. Journal of the American Chemical Society 134, Nr. 8 (17.02.2012): 3766–79. http://dx.doi.org/10.1021/ja209331y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Filonov, A. B., D. B. Migas, V. L. Shaposhnikov, V. E. Borisenko und A. Heinrich. „Narrow-gap semiconducting silicides: the band structure“. Microelectronic Engineering 50, Nr. 1-4 (Januar 2000): 249–55. http://dx.doi.org/10.1016/s0167-9317(99)00289-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Walukiewicz, Wladek. „Narrow band gap group III-nitride alloys“. Physica E: Low-dimensional Systems and Nanostructures 20, Nr. 3-4 (Januar 2004): 300–307. http://dx.doi.org/10.1016/j.physe.2003.08.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hayase, Shuzi. „Perovskite solar cells with narrow band gap“. Current Opinion in Electrochemistry 11 (Oktober 2018): 146–50. http://dx.doi.org/10.1016/j.coelec.2018.10.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Galaiko, V. P., E. V. Bezuglyi, E. N. Bratus’ und V. S. Shumeiko. „Relaxation processes and kinetic phenomena in narrow-gap superconductors“. Soviet Journal of Low Temperature Physics 14, Nr. 4 (01.04.1988): 242–44. https://doi.org/10.1063/10.0031925.

Der volle Inhalt der Quelle
Annotation:
The possibility of using the two-band superconductor model1 by taking into consideration the electron scattering at the lattice defects and the correlation interaction of the wide- and narrow-band electrons for describing the kinetic properties of high-Tc superconductors (HTS) in normal state is discussed. Specific features of the relaxation processes in the electron system of a narrow-band conductor, viz. the non-Born impurity scattering in the region of band overlapping, and an anomalous increase in the electron–electron scattering for a partially filled narrow band, are explained. The temperature dependence of resistance, caused by the interference of various relaxation mechanisms, contains a broad-linear region typical of HTS, while the thermoelectric coefficient has an anomalously large value which reverses its sign upon a variation of temperature and electron concentration. A comparison is made between the kinetic and thermodynamic properties of the two-band model for different values of its microscopic parameters.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dashevsky, Z., V. Kasiyan, S. Asmontas, J. Gradauskas, E. Shirmulis, E. Flitsiyan und L. Chernyak. „Photothermal effect in narrow band gap PbTe semiconductor“. Journal of Applied Physics 106, Nr. 7 (Oktober 2009): 076105. http://dx.doi.org/10.1063/1.3243081.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Jenekhe, Samson A. „A class of narrow-band-gap semiconducting polymers“. Nature 322, Nr. 6077 (Juli 1986): 345–47. http://dx.doi.org/10.1038/322345a0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sofo, J. O., und G. D. Mahan. „Electronic structure ofCoSb3:A narrow-band-gap semiconductor“. Physical Review B 58, Nr. 23 (15.12.1998): 15620–23. http://dx.doi.org/10.1103/physrevb.58.15620.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mahanti, S. D., Khang Hoang und Salameh Ahmad. „Deep defect states in narrow band-gap semiconductors“. Physica B: Condensed Matter 401-402 (Dezember 2007): 291–95. http://dx.doi.org/10.1016/j.physb.2007.08.169.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Haddad, G. I., R. K. Mains, U. K. Reddy und J. R. East. „A proposed narrow-band-gap base transistor structure“. Superlattices and Microstructures 5, Nr. 3 (Januar 1989): 437–41. http://dx.doi.org/10.1016/0749-6036(89)90329-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Triboulet, R. „MOVPE of narrow band gap II–VI materials“. Journal of Crystal Growth 107, Nr. 1-4 (Januar 1991): 598–604. http://dx.doi.org/10.1016/0022-0248(91)90527-c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Singh, M., und P. R. Wallace. „Inter-band magneto-optics in narrow-gap semiconductors“. Journal of Physics C: Solid State Physics 20, Nr. 14 (20.05.1987): 2169–81. http://dx.doi.org/10.1088/0022-3719/20/14/018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Sun, Peijie, Niels Oeschler, Simon Johnsen, Bo B. Iversen und Frank Steglich. „Narrow band gap and enhanced thermoelectricity in FeSb2“. Dalton Trans. 39, Nr. 4 (2010): 1012–19. http://dx.doi.org/10.1039/b918909b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Humayun, M. A., M. A. Rashid, F. A. Malek, A. N. Hussain und I. Daut. „Design of Quantum Dot Based LASER with Ultra-Low Threshold Current Density“. Applied Mechanics and Materials 229-231 (November 2012): 1639–42. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.1639.

Der volle Inhalt der Quelle
Annotation:
Reduction in threshold current density is the major challenge in the field of semiconductor laser design. The threshold current density can be minimized by introducing low dimensional material system with narrow band gap. InN has a narrow band gap of 0.7 eV and quantum dot provides three dimensional confinement factor. In this paper, we propose then InN quantum dot as the active layer material that will serve both the purpose of narrow band gap and three dimensional confinement. The simulation results show that the current density reduces drastically with the cavity length.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Chu, Jun‐hao, Zheng‐yu Mi und Ding‐yuan Tang. „Band‐to‐band optical absorption in narrow‐gap Hg1−xCdxTe semiconductors“. Journal of Applied Physics 71, Nr. 8 (15.04.1992): 3955–61. http://dx.doi.org/10.1063/1.350867.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Choi, J. B., S. Liu und H. D. Drew. „Metallic impurity band in the narrow-band-gap semiconductorn-type InSb“. Physical Review B 43, Nr. 5 (15.02.1991): 4046–50. http://dx.doi.org/10.1103/physrevb.43.4046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Söderström, J. R., E. T. Yu, M. K. Jackson, Y. Rajakarunanayake und T. C. McGill. „Two‐band modeling of narrow band gap and interband tunneling devices“. Journal of Applied Physics 68, Nr. 3 (August 1990): 1372–75. http://dx.doi.org/10.1063/1.346688.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Wei, Yong Sen. „Narrow-Band-Gap Polymer Photovoltaic Materials Synthesis and Photovoltaic Research“. Applied Mechanics and Materials 273 (Januar 2013): 468–72. http://dx.doi.org/10.4028/www.scientific.net/amm.273.468.

Der volle Inhalt der Quelle
Annotation:
In recent years, research of the narrow-band-gap polymer photovoltaic (PV) materials in the field of light-emitting diodes, field effect transistors, solar cells and sensors has made tremendous progress and its application becomes more widely. In order to obtain a better performance of the photovoltaic material, in the process of design the polymer, we must consider the spectral range, the energy gap, the balance between the LUMO and HOMO level. Through the analysis of the narrow-band-gap polymers, this paper described the synthesis of the photovoltaic material, and detailed analyzes its photovoltaic characteristics. This paper introduces the double bonds to combine DTBT receptors and different electron donor, to synthesize new narrow-band-gap polymer photovoltaic materials with photovoltaic properties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Fang, Hui, Fei-Peng Zhang, Zhi-Nian Jiang, Jin-Yun Peng und Ru-Zhi Wang. „Strain-induced asymmetric modulation of band gap in narrow armchair-edge graphene nanoribbon“. Modern Physics Letters B 29, Nr. 34 (20.12.2015): 1550224. http://dx.doi.org/10.1142/s0217984915502243.

Der volle Inhalt der Quelle
Annotation:
We investigate the band structure of narrow armchair-edge graphene nanoribbons (AGNRs) under tensile strain by means of an extension of the Extended Hückel method. The strain-induced band gap modulation presents asymmetric behavior. The asymmetric modulation of band gap is derived from the different changes of conduction and valence bands near Fermi level under tensile strain. Further analysis suggests that the asymmetric variation of band structure near Fermi level only appear in narrow armchair-edge graphene nanoribbons.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Deng, J. Y., L. X. Guo und J. H. Yang. „Narrow Band Notches for Ultra-Wideband Antenna Using Electromagnetic Band-Gap Structures“. Journal of Electromagnetic Waves and Applications 25, Nr. 17-18 (Januar 2011): 2320–27. http://dx.doi.org/10.1163/156939311798806211.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Livache, Clément, Nicolas Goubet, Bertille Martinez, Amardeep Jagtap, Junling Qu, Sandrine Ithurria, Mathieu G. Silly, Benoit Dubertret und Emmanuel Lhuillier. „Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals“. ACS Applied Materials & Interfaces 10, Nr. 14 (26.03.2018): 11880–87. http://dx.doi.org/10.1021/acsami.8b00153.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Panday, Suman Raj, und Maxim Dzero. „Interacting fermions in narrow-gap semiconductors with band inversion“. Journal of Physics: Condensed Matter 33, Nr. 27 (28.05.2021): 275601. http://dx.doi.org/10.1088/1361-648x/abfc6e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Litovchenko, V., A. Evtukh, M. Semenenko, A. Grygoriev, O. Yilmazoglu, H. L. Hartnagel, L. Sirbu, I. M. Tiginyanu und V. V. Ursaki. „Electron field emission from narrow band gap semiconductors (InAs)“. Semiconductor Science and Technology 22, Nr. 10 (05.09.2007): 1092–96. http://dx.doi.org/10.1088/0268-1242/22/10/003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Mookerjea, Saurabh, Ramakrishnan Krishnan, Aaron Vallett, Theresa Mayer und Suman Datta. „Inter-band Tunnel Transistor Architecture using Narrow Gap Semiconductors“. ECS Transactions 19, Nr. 5 (18.12.2019): 287–92. http://dx.doi.org/10.1149/1.3119553.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Liu, Xiaofeng, Yanming Sun, Louis A. Perez, Wen Wen, Michael F. Toney, Alan J. Heeger und Guillermo C. Bazan. „Narrow-Band-Gap Conjugated Chromophores with Extended Molecular Lengths“. Journal of the American Chemical Society 134, Nr. 51 (13.12.2012): 20609–12. http://dx.doi.org/10.1021/ja310483w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Arbizzani, Catia, Mariaella Catellani, M. Grazia Cerroni und Marina Mastragostino. „Polydithienothiophenes: two new conjugated materials with narrow band gap“. Synthetic Metals 84, Nr. 1-3 (Januar 1997): 249–50. http://dx.doi.org/10.1016/s0379-6779(97)80736-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Del Nero, Jordan, und Bernardo Laks. „Spectroscopic study of polyazopyrroles (a narrow band gap system)“. Synthetic Metals 101, Nr. 1-3 (Mai 1999): 440–41. http://dx.doi.org/10.1016/s0379-6779(98)01134-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Lee, Ven-Chung. „Electron-mediated indirect interaction in narrow-band-gap semiconductors“. Physical Review B 44, Nr. 19 (15.11.1991): 10892–94. http://dx.doi.org/10.1103/physrevb.44.10892.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

White, J. K., C. A. Musca, H. C. Lee und L. Faraone. „Hydrogenation of ZnS passivation on narrow-band gap HgCdTe“. Applied Physics Letters 76, Nr. 17 (24.04.2000): 2448–50. http://dx.doi.org/10.1063/1.126372.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Welch, Gregory C., und Guillermo C. Bazan. „Lewis Acid Adducts of Narrow Band Gap Conjugated Polymers“. Journal of the American Chemical Society 133, Nr. 12 (30.03.2011): 4632–44. http://dx.doi.org/10.1021/ja110968m.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Nachev, Ivo S. „Band-mixing and bound states in narrow-gap semiconductors“. Physica Scripta 37, Nr. 5 (01.05.1988): 825–27. http://dx.doi.org/10.1088/0031-8949/37/5/032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Misra, S., G. S. Tripathi und P. K. Misra. „Temperature-dependent magnetic susceptibility of narrow band-gap semiconductors“. Journal of Physics C: Solid State Physics 19, Nr. 12 (30.04.1986): 2007–19. http://dx.doi.org/10.1088/0022-3719/19/12/014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Gilbert, M. J., R. Akis und D. K. Ferry. „Semiconductor waveguide inversion in disordered narrow band-gap materials“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, Nr. 4 (2003): 1924. http://dx.doi.org/10.1116/1.1589521.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Luo, Ning, Gaohua Liao und H. Q. Xu. „k.p theory of freestanding narrow band gap semiconductor nanowires“. AIP Advances 6, Nr. 12 (Dezember 2016): 125109. http://dx.doi.org/10.1063/1.4972987.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Magno, R., E. R. Glaser, B. P. Tinkham, J. G. Champlain, J. B. Boos, M. G. Ancona und P. M. Campbell. „Narrow band gap InGaSb, InAlAsSb alloys for electronic devices“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24, Nr. 3 (2006): 1622. http://dx.doi.org/10.1116/1.2201448.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Lee, Y., M. Lee, S. Sadki, B. Tsuie und J. R. Reynolds. „A New Narrow Band Gap Electroactive Silole Containing Polymer“. Molecular Crystals and Liquid Crystals 377, Nr. 1 (Januar 2002): 289–92. http://dx.doi.org/10.1080/10587250211630.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Lhuillier, Emmanuel. „Narrow band gap nanocrystals for infrared cost-effective optoelectronics“. Photoniques, Nr. 116 (2022): 54–57. http://dx.doi.org/10.1051/photon/202211654.

Der volle Inhalt der Quelle
Annotation:
Infrared optoelectronics is driven by epitaxially grown semiconductors and the introduction of alternative materials is often viewed with some suspicion until the newcomer has demonstrated a high degree of viability. Infrared nanocrystals have certainly reached this degree of maturity switching from the demonstration of absorption by chemists to their integration into increasingly complex systems. Here, we review some of the recent developments relative to the integration of nanocrystal devices in the 1-5 µm range.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Mulenko, S. A., Y. V. Kudryavtsev und V. P. Mygashko. „Laser synthesis of semiconductor nanostructures with narrow band gap“. Applied Surface Science 253, Nr. 19 (Juli 2007): 7973–76. http://dx.doi.org/10.1016/j.apsusc.2007.02.073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

MALKOVA, M., und F. DOMINGUEZ-ADAME. „TRANSMISSION RESONANCES IN MAGNETIC STRUCTURES BASED ON NARROW-GAP SEMICONDUCTORS“. Surface Review and Letters 07, Nr. 01n02 (Februar 2000): 123–26. http://dx.doi.org/10.1142/s0218625x00000166.

Der volle Inhalt der Quelle
Annotation:
In this work we are concerned with magnetic junction structures in which a homogeneous narrow-gap semiconductor is subjected to an inhomogeneous magnetic field, in an attempt to elucidate the band-structure effect on the resonance tunneling. Careful investigation of the transmission as a function of the energy shows that the resonances in the spectrum can appear. These are remnants of the Landau levels localized near the interface boundary. Comparing the solutions obtained within two-band and single-band models we found the allowed values of the momentum to be quite different, resulting in different resonant values of the transmission coefficient of electron transport through the magnetic interface.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Fan, Guang Hui, De Xun Zhao, Jiao He und Ying Kai Liu. „Transmission Properties in 2D Phononic Crystal Thin Plate with Linear Defect“. Advanced Materials Research 652-654 (Januar 2013): 1383–87. http://dx.doi.org/10.4028/www.scientific.net/amr.652-654.1383.

Der volle Inhalt der Quelle
Annotation:
The band gap of 2D perfect phononic crystal thin plate was investigated by plane-wave expansion (PWE), which is consist of copper embedded in the organic glass with a square arrangement. The band gap of straight linear defect, branching linear defect, and symmetrical linear defect are calculated by supercell plane wave method respectively. It is found that the bandwidth of defect structure will become narrow. Especially there is little band gap appearing for straight linear defect. As the filling fraction varied, the band gap width and the band gap number changed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Aleshkin V. Ya. und Dubinov A. A. „Influence of quantum well parameters on the spectrum of two-dimensional plasmons in HgTe/CdHgTe heterostructures“. Semiconductors 56, Nr. 13 (2022): 2026. http://dx.doi.org/10.21883/sc.2022.13.54781.45.

Der volle Inhalt der Quelle
Annotation:
Influence of parameters of a quantum well and electronic polarizability spatial dispersion on the dependence of two-dimensional plasmon energy on wave vector in narrow-gap CdHgTe quantum wells (band gap 35 meV) is studied theoretically. It is shown that at energies above 20 meV, the dispersion law of two-dimensional plasmons is close to linear. Taking into account the finite width of the quantum well decreases the plasmon phase velocity. This effect increases with an increase in the fraction of cadmium in the QW while maintaining the band gap and with a decrease in the concentration of charge carriers in it. Keywords: two-dimensional plasmon, narrow-gap HgTe.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Sun, Chenglong. „Preparation and photocatalytic application of nonmetallic doped TiO2 films with narrow band gap“. Applied and Computational Engineering 7, Nr. 1 (21.07.2023): 801–6. http://dx.doi.org/10.54254/2755-2721/7/20230516.

Der volle Inhalt der Quelle
Annotation:
TiO2 thin film has become a widely used photocatalyst due to its stable chemical properties, suitable edge position, non-toxicity and low cost, and the film structure is conducive to recycling and loading. However, because the band gap of titanium dioxide is relatively wide, visible light is difficult to be utilized, which also limit the utilization of TiO2. In recent years, non-metallic doping has been proven to be an extraordinarily efficient methodologies to reduce band gap and improve photocatalytic efficiency of TiO2 films. In this paper, the basic principle of photocatalysis and the principle of reducing band gap by doping inorganic non-metallic elements are briefly introduced, and the preparation methods of N, C and B inorganic non-metallic elements doped TiO2 films are reviewed, as well as their functions on reducing band gap of TiO2. Finally, the research status of inorganic non-metallic element doped TiO2 thin film in photodecomposition of water and organic decomposition in catalytic solution was introduced.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Saidov, M. S. „Peculiarities of solar elements based on narrow-band-gap semiconductors“. Applied Solar Energy 47, Nr. 4 (Dezember 2011): 259–62. http://dx.doi.org/10.3103/s0003701x1104013x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Liu Yanhong, 刘艳红, 董丽娟 Dong Lijuan, 刘丽想 Liu Lixiang und 石云龙 Shi Yunlong. „Narrow Bandpass Angular Filter Based on Anisotropic Photonic Band Gap“. Acta Optica Sinica 33, Nr. 8 (2013): 0823001. http://dx.doi.org/10.3788/aos201333.0823001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Lind, Erik, Yann-Michel Niquet, Hector Mera und Lars-Erik Wernersson. „Accumulation capacitance of narrow band gap metal-oxide-semiconductor capacitors“. Applied Physics Letters 96, Nr. 23 (07.06.2010): 233507. http://dx.doi.org/10.1063/1.3449559.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Liu, Xiaofeng, Ben B. Y. Hsu, Yanming Sun, Cheng-Kang Mai, Alan J. Heeger und Guillermo C. Bazan. „High Thermal Stability Solution-Processable Narrow-Band Gap Molecular Semiconductors“. Journal of the American Chemical Society 136, Nr. 46 (05.11.2014): 16144–47. http://dx.doi.org/10.1021/ja510088x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Zhang, Han-Yue, Chun-Li Hu, Zhao-Bo Hu, Jiang-Gao Mao, You Song und Ren-Gen Xiong. „Narrow Band Gap Observed in a Molecular Ferroelastic: Ferrocenium Tetrachloroferrate“. Journal of the American Chemical Society 142, Nr. 6 (23.01.2020): 3240–45. http://dx.doi.org/10.1021/jacs.9b13446.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Popov, Andrei, Victor Sherstnev, Yury Yakovlev, Peter Werle und Robert Mücke. „Relaxation oscillations in single-frequency InAsSb narrow band-gap lasers“. Applied Physics Letters 72, Nr. 26 (29.06.1998): 3428–30. http://dx.doi.org/10.1063/1.121655.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Zhang, Zhi-Xu, Han-Yue Zhang, Wei Zhang, Xiao-Gang Chen, Hui Wang und Ren-Gen Xiong. „Organometallic-Based Hybrid Perovskite Piezoelectrics with a Narrow Band Gap“. Journal of the American Chemical Society 142, Nr. 41 (01.10.2020): 17787–94. http://dx.doi.org/10.1021/jacs.0c09288.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie