Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Nanoscale chemical imaging“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Nanoscale chemical imaging" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Nanoscale chemical imaging"
Anderson, IM, JH J. Scott und ZH Levine. „Three-Dimensional Nanoscale Chemical Imaging via EFTEM Spectral Imaging“. Microscopy and Microanalysis 12, S02 (31.07.2006): 1550–51. http://dx.doi.org/10.1017/s1431927606068784.
Der volle Inhalt der QuelleHäberle, T., D. Schmid-Lorch, F. Reinhard und J. Wrachtrup. „Nanoscale nuclear magnetic imaging with chemical contrast“. Nature Nanotechnology 10, Nr. 2 (05.01.2015): 125–28. http://dx.doi.org/10.1038/nnano.2014.299.
Der volle Inhalt der QuelleStadler, Johannes, Thomas Schmid und Renato Zenobi. „Nanoscale Chemical Imaging of Single-Layer Graphene“. ACS Nano 5, Nr. 10 (07.10.2011): 8442–48. http://dx.doi.org/10.1021/nn2035523.
Der volle Inhalt der QuelleNowak, Derek, William Morrison, H. Kumar Wickramasinghe, Junghoon Jahng, Eric Potma, Lei Wan, Ricardo Ruiz et al. „Nanoscale chemical imaging by photoinduced force microscopy“. Science Advances 2, Nr. 3 (März 2016): e1501571. http://dx.doi.org/10.1126/sciadv.1501571.
Der volle Inhalt der QuelleWilson, Andrew J., Dinumol Devasia und Prashant K. Jain. „Nanoscale optical imaging in chemistry“. Chemical Society Reviews 49, Nr. 16 (2020): 6087–112. http://dx.doi.org/10.1039/d0cs00338g.
Der volle Inhalt der QuelleRetterer, Scott T., Jennifer L. Morrell-Falvey und Mitchel J. Doktycz. „Nano-Enabled Approaches to Chemical Imaging in Biosystems“. Annual Review of Analytical Chemistry 11, Nr. 1 (12.06.2018): 351–73. http://dx.doi.org/10.1146/annurev-anchem-061417-125635.
Der volle Inhalt der QuelleCimatu, K. A., S. M. Mahurin, K. A. Meyer und R. W. Shaw. „Nanoscale Chemical Imaging of Zinc Oxide Nanowire Corrosion“. Journal of Physical Chemistry C 116, Nr. 18 (27.04.2012): 10405–14. http://dx.doi.org/10.1021/jp301922a.
Der volle Inhalt der QuelleKelly, K. F., E. T. Mickelson, R. H. Hauge, J. L. Margrave und N. J. Halas. „Nanoscale imaging of chemical interactions: Fluorine on graphite“. Proceedings of the National Academy of Sciences 97, Nr. 19 (29.08.2000): 10318–21. http://dx.doi.org/10.1073/pnas.190325397.
Der volle Inhalt der QuelleKumar, Naresh, Bert M. Weckhuysen, Andrew J. Wain und Andrew J. Pollard. „Nanoscale chemical imaging using tip-enhanced Raman spectroscopy“. Nature Protocols 14, Nr. 4 (25.03.2019): 1169–93. http://dx.doi.org/10.1038/s41596-019-0132-z.
Der volle Inhalt der QuellePrater, C. B., M. Lo, Q. Hu, H. Yang, C. Marcott und K. Kjoller. „Nanoscale Chemical Imaging via AFM coupled IR Spectroscopy“. Microscopy and Microanalysis 21, S3 (August 2015): 1869–70. http://dx.doi.org/10.1017/s1431927615010120.
Der volle Inhalt der QuelleDissertationen zum Thema "Nanoscale chemical imaging"
Wolf, Daniel, und Christian Kübel. „Electron Tomography for 3D imaging of Nanoscale Materials“. Carl Hanser Verlag, 2018. https://slub.qucosa.de/id/qucosa%3A33863.
Der volle Inhalt der QuelleCooney, Gary Sean. „Spectroscopie Raman exaltée de pointe pour la caractérisation de systèmes biologiques : de l'imagerie chimique et structurale nanométrique à l’air à son développement en milieu liquide“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0267.
Der volle Inhalt der QuelleThe aims of this thesis are the development of tip-enhanced Raman spectroscopy (TERS) for applications in liquid media, specifically for the study of lipid membranes and amyloid proteins which are implicated in neurodegenerative diseases like Alzheimer’s. TERS overcomes the diffraction limit of conventional Raman spectroscopy by combining the high spatial resolution of scanning probe microscopy with the chemical specificity of surface-enhanced Raman spectroscopy (SERS). By employing a metal-coated nano-tapered scanning probe microscopy probe tip, TERS generates a localised enhancement of the Raman signal at the tip apex. This enables the study of optically non-resonant biomolecules at the nanoscale in a label-free and non-destructive manner. The key challenges that are addressed in this work include the fabrication of TERS-active tips, the optimisation of our novel total-internal reflection (TIR)-TERS system for use in liquid environments, and the handling of the complex data obtained from hyperspectral TERS imaging. Amyloid proteins in the form of Tau fibrils were studied using this TIR-TERS setup with heparin-induced Tau fibrils being a benchmark for evaluating the performance of the system. TERS studies of RNA-induced Tau fibrils provided insight into the underlying formation mechanisms of amyloid fibrils. In addition, these data were used to explore the use of chemometric methods, such as Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA), for their fine analysis. These methods were evaluated in the context of more traditional peak-picking methods. This thesis also details the development of a liquid-compatible TIR-TERS system and its application to the study of supported lipid bilayers in aqueous media. This advancement enables the nanoscale investigation of lipid membranes in biologically relevant media, which is more representative compared to TERS in air. With the outlook of future works investigating protein-lipid interactions, these innovations are crucial for understanding amyloid fibril formation and their deleterious effects on neuronal cells. To conclude, this thesis enhances TERS as a tool for studying biomolecular structures in the context of neurodegenerative diseases at the nanoscale, and the optimised TIR-TERS system provides a platform for future research in biological and biomedical applications
Paulite, Melissa Joanne. „Nanoscale Chemical Imaging of Synthetic and Biological Materials using Apertureless Near-field Scanning Infrared Microscopy“. Thesis, 2012. http://hdl.handle.net/1807/34838.
Der volle Inhalt der QuelleBuchteile zum Thema "Nanoscale chemical imaging"
Aronova, M. A., Y. C. Kim, A. A. Sousa, G. Zhang und R. D. Leapman. „Nanoscale Imaging of Chemical Elements in Biomedicine“. In IFMBE Proceedings, 357–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14998-6_91.
Der volle Inhalt der QuelleOvchinnikova, Olga S. „Toward Nanoscale Chemical Imaging: The Intersection of Scanning Probe Microscopy and Mass Spectrometry“. In Scanning Probe Microscopy of Functional Materials, 181–98. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7167-8_7.
Der volle Inhalt der QuelleMehdizadeh, B., K. Vessalas, B. Ben, A. Castel, S. Deilami und H. Asadi. „Advances in Characterization of Carbonation Behavior in Slag-Based Concrete Using Nanotomography“. In Lecture Notes in Civil Engineering, 297–308. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_30.
Der volle Inhalt der QuelleSchmid, Gregor, Martin Obst, Juan Wu und Adam Hitchcock. „3D Chemical Imaging of Nanoscale Biological, Environmental, and Synthetic Materials by Soft X-Ray STXM Spectrotomography“. In X-ray and Neutron Techniques for Nanomaterials Characterization, 43–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48606-1_2.
Der volle Inhalt der QuelleMenoni, C. S., I. Kuznetsov, T. Green, W. Chao, E. R. Bernstein, D. C. Crick und J. J. Rocca. „Soft X-Ray Laser Ablation Mass Spectrometry for Chemical Composition Imaging in Three Dimensions (3D) at the Nanoscale“. In Springer Proceedings in Physics, 221–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73025-7_34.
Der volle Inhalt der QuelleVerrecchia, Eric P., und Luca Trombino. „The Future of Soil Micromorphology“. In A Visual Atlas for Soil Micromorphologists, 151–55. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67806-7_6.
Der volle Inhalt der QuelleLiew, Thomas, R. Ji und G. L. Chen. „High Spatial Resolution Chemical Imaging of Tribo- Surfaces in Magnetic Recording“. In Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales, 869–76. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0736-8_62.
Der volle Inhalt der QuelleSharma, Rohit, Mr Siddhartha, Mr Ghazi und Ms Sweety Pal. „ADVANCEMENT IN MEDICAL IMAGING: NANOTECHNOLOGY“. In Futuristic Trends in Chemical Material Sciences & Nano Technology Volume 3 Book 5, 152–63. Iterative International Publishers, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3becs5p2ch2.
Der volle Inhalt der QuelleChopra, Dimple Sethi. „Nanocomposites in Drug Delivery and Imaging Applications“. In Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials, 1539–54. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8591-7.ch063.
Der volle Inhalt der QuelleChopra, Dimple Sethi. „Nanocomposites in Drug Delivery and Imaging Applications“. In Multifunctional Nanocarriers for Contemporary Healthcare Applications, 415–30. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-4781-5.ch015.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Nanoscale chemical imaging"
Greaves, George E., Holger W. Auner, Alexandra E. Porter und Chris C. Phillips. „Nanoscale Mid-IR Spectroscopic Imaging of Cellular Ultrastructure.“ In Imaging Systems and Applications, ITh5C.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/isa.2024.ith5c.2.
Der volle Inhalt der QuelleMeng, Zhao-Dong, En-Ming You, Jun Yi und Zhong-Qun Tian. „Single-molecule MIR absorption detection and nanoscale imaging“. In CLEO: Applications and Technology, JTh2A.123. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jth2a.123.
Der volle Inhalt der QuelleSanap, Balaji, Takuo Tanaka und Taka-aki Yano. „SERS Detection of Chemical Reactions Induced by Optical Heat“. In JSAP-Optica Joint Symposia, 17a_A34_5. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.17a_a34_5.
Der volle Inhalt der QuelleXia, Qing, und Ji-Xin Cheng. „Mid-infrared photothermal microscopy: imaging chemicals and chemistry on the nanoscale“. In Enhanced Spectroscopies and Nanoimaging 2024, herausgegeben von Prabhat Verma und Yung Doug Suh, 36. SPIE, 2024. http://dx.doi.org/10.1117/12.3028124.
Der volle Inhalt der QuelleKuznetsov, Ilya, Jorge Filevich, Feng Dong, Mark Woolston, Weilun Chao, Erik H. Anderson, Elliot R. Bernstein, Dean C. Crick, Jorge J. Rocca und Carmen S. Menoni. „Ultrasensivite three dimensional nanoscale chemical imaging“. In 2015 IEEE Photonics Conference (IPC). IEEE, 2015. http://dx.doi.org/10.1109/ipcon.2015.7323706.
Der volle Inhalt der QuelleZenobi, Renato. „Tip-enhanced Raman spectroscopy for nanoscale chemical analysis and imaging“. In Optical Sensors, herausgegeben von Robert A. Lieberman, Francesco Baldini und Jiri Homola. SPIE, 2018. http://dx.doi.org/10.1117/12.2271262.
Der volle Inhalt der QuelleRose, Volker, John W. Freeland, R. Garrett, I. Gentle, K. Nugent und S. Wilkins. „Nanoscale chemical imaging using synchrotron x-ray enhanced scanning tunneling microscopy“. In SRI 2009, 10TH INTERNATIONAL CONFERENCE ON RADIATION INSTRUMENTATION. AIP, 2010. http://dx.doi.org/10.1063/1.3463236.
Der volle Inhalt der QuelleMenoni, Carmen S. „Nanoscale chemical imaging by extreme ultraviolet laser ablation time of flight spectrometry“. In Compact EUV & X-ray Light Sources. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/euvxray.2018.et2b.1.
Der volle Inhalt der QuelleMenoni, Carmen S., Ilya Kuznetsov und Jorge J. Rocca. „Nanoscale Three Dimensional Chemical Imaging by Extreme Ultraviolet Laser Ablation Mass Spectrometry“. In Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/laop.2018.tu3e.1.
Der volle Inhalt der QuelleMinn, Khant, Blake Birmingham, Howard Lee und Zhenrong Zhang. „Nano-focusing of light with optical fiber probe for nanoscale chemical imaging“. In Optical Fibers and Sensors for Medical Diagnostics, Treatment and Environmental Applications XXI, herausgegeben von Israel Gannot und Katy Roodenko. SPIE, 2021. http://dx.doi.org/10.1117/12.2581553.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Nanoscale chemical imaging"
Lal, Surbhi, und Martha Alexander. A Multimodality Ultramicrospectroscope (MUMS): Nanoscale Imaging with Integrated Spectroscopies for Chemical and Biomolecular Identification. Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ada544990.
Der volle Inhalt der Quelle