Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Nanopores artificiels“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Nanopores artificiels" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Nanopores artificiels"
Molcrette, Bastien, Léa Chazot-Franguiadakis, Thomas Auger und Fabien Montel. „Quelques éléments de physique autour des nanopores biologiques“. Reflets de la physique, Nr. 75 (April 2023): 18–23. http://dx.doi.org/10.1051/refdp/202375018.
Der volle Inhalt der QuelleTsukanov, Alexey A., und Evgeny V. Shilko. „Computer-Aided Design of Boron Nitride-Based Membranes with Armchair and Zigzag Nanopores for Efficient Water Desalination“. Materials 13, Nr. 22 (20.11.2020): 5256. http://dx.doi.org/10.3390/ma13225256.
Der volle Inhalt der QuelleWillems, Kherim, Veerle Van Meervelt, Carsten Wloka und Giovanni Maglia. „Single-molecule nanopore enzymology“. Philosophical Transactions of the Royal Society B: Biological Sciences 372, Nr. 1726 (19.06.2017): 20160230. http://dx.doi.org/10.1098/rstb.2016.0230.
Der volle Inhalt der QuelleIvanov, Yuri D., Alexander N. Ableev, Ivan D. Shumov, Irina A. Ivanova, Nikita V. Vaulin, Denis V. Lebedev, Anton S. Bukatin, Ivan S. Mukhin und Alexander I. Archakov. „Registration of Functioning of a Single Horseradish Peroxidase Macromolecule with a Solid-State Nanopore“. International Journal of Molecular Sciences 24, Nr. 21 (27.10.2023): 15636. http://dx.doi.org/10.3390/ijms242115636.
Der volle Inhalt der QuelleAcar, Elif Turker, Steven F. Buchsbaum, Cody Combs, Francesco Fornasiero und Zuzanna S. Siwy. „Biomimetic potassium-selective nanopores“. Science Advances 5, Nr. 2 (Februar 2019): eaav2568. http://dx.doi.org/10.1126/sciadv.aav2568.
Der volle Inhalt der QuelleMao, Haowei, Qun Ma, Hongquan Xu, Lei Xu, Qiujiao Du, Pengcheng Gao und Fan Xia. „Exploring the contribution of charged species at the outer surface to the ion current signal of nanopores: a theoretical study“. Analyst 146, Nr. 16 (2021): 5089–94. http://dx.doi.org/10.1039/d1an00826a.
Der volle Inhalt der QuelleShimizu, Keisuke, Batsaikhan Mijiddorj, Masataka Usami, Ikuro Mizoguchi, Shuhei Yoshida, Shiori Akayama, Yoshio Hamada et al. „De novo design of a nanopore for single-molecule detection that incorporates a β-hairpin peptide“. Nature Nanotechnology 17, Nr. 1 (22.11.2021): 67–75. http://dx.doi.org/10.1038/s41565-021-01008-w.
Der volle Inhalt der QuelleFürjes, Péter. „Controlled Focused Ion Beam Milling of Composite Solid State Nanopore Arrays for Molecule Sensing“. Micromachines 10, Nr. 11 (13.11.2019): 774. http://dx.doi.org/10.3390/mi10110774.
Der volle Inhalt der QuelleKong, Hai Yan, Ji Huan He, Rou Xi Chen und Liang Wang. „Highly Selective Adsorption of Plants' Leaves on Nanoparticles“. Journal of Nano Research 22 (Mai 2013): 71–84. http://dx.doi.org/10.4028/www.scientific.net/jnanor.22.71.
Der volle Inhalt der QuelleAgapova, O. I., A. E. Efimov, M. M. Moisenovich, V. G. Bogush und I. I. Agapov. „COMPARATIVE ANALYSIS OF THREE-DIMENSIONAL NANOSTRUCTURE OF POROUS BIOCOMPATIBLE SCAFFOLDS MADE OF RECOMBINANT SPIDROIN AND SILK FIBROIN FOR REGENERATIVE MEDICINE“. Russian Journal of Transplantology and Artificial Organs 17, Nr. 2 (26.05.2015): 37–44. http://dx.doi.org/10.15825/1995-1191-2015-2-37-44.
Der volle Inhalt der QuelleDissertationen zum Thema "Nanopores artificiels"
Morin, Alan. „Nanopores artificiels pour la bio-analyse et la nanomédecine“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLE012/document.
Der volle Inhalt der QuelleNanopores are nanometric holes on insulating membranes that allow the tracking of objects going through. Natural nanopores exist and are easily reproducible in laboratory conditions (alpha-hemolysine) but they are not compatible with a mobile device due to their fragility and to their reduced lifetime. Investigating solid-state nanopores allows us to approach a more stable alternative with a higher degree of reproductibility. Our nanopores are obtained by FIB drilling at LPN on various supporting membranes. The aim of this thesis is to investigate the use of SiN as a membrane to detect viruses
Cressiot, Benjamin. „Transport de protéines natives, partiellement et complètement dépliées à travers des nanopores protéiques et artificiels“. Thesis, Evry-Val d'Essonne, 2012. http://www.theses.fr/2012EVRY0016.
Der volle Inhalt der QuelleWe study the transport of native, partially or completely unfolded proteins through protein or solid-state nanopores at the single molecule level using an electrical detection. The model system that we use is the wild-type MalE or mutant protein, in particular MalE219, which unfolds at lower concentration of denaturing agent than the wild type. We show that the translocation of partially unfolded proteins through the Hemolysin protein channel, a toxin from Staphylococcus aureus, depends on of individual conformations that we can distinguish. The unfolded proteins pass rapidly through the nanopores. We directly measure their proportion as a function of the concentration of denaturing agent. The technique is very sensitive to the mutations affecting the folding properties. We also study the transport of proteins through solid-state nanopores in different situations. We first compare the transport of native and fully unfolded proteins through a nanopore of large diameter. We then study the tranlocation of unfolded proteins through a narrow pore, whose diameter is smaller than the protein size. We observe different regimes of translocation by varying the applied electric field, which we interpret using a simple theoretical model
Auger, Thomas. „Translocation de biopolymères à travers des pores naturels ou artificiels“. Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC128/document.
Der volle Inhalt der QuelleThe translocation of biopolymers through a nanopore is a feature common to many biological andtechnological processes such as the nucleocytoplasmic transport through the nuclear pore complex(NPC), protein secretion, fast DNA sequencing or capillary electrophoresis.We have developed an original single molecule optical detection technique for the study of biopolymerstranslocation through a nanopore based on the Zero-Mode Waveguide effect. We studied thepassage of double stranded DNA of different sizes, of single stranded DNA and of double-stranded RNAdriven by a flux through track-etched nanoporous membranes. We demonstrate that translocation isgoverned by a critical flux independent of both biopolymer size and nature and of the pore radius inagreement with the theoretical predictions of Brochard and de Gennes.The NPC is a biological nanopore responsible for the selective transport between cytoplasm andnucleus in cells. We studied the influence of importinBeta1 concentration – a protein involved in the nucleocytoplasmictransport – on the structure of the central channel of the NPC of Xenopus laevis byassessing the diffusion of fluorescently labeled Dextran molecules through the NPC. We observe anopening of the central channel at low concentration followed by a shrinking at higher concentrationin importinBeta1 in agreement with mean-field models from Opferman et al. and Ando et al. and withexperiments on biomimetic in vitro systems from Lim et al. and Zahn et al
Boccalon, Mariangela. „Design and synthesis of artificial porphyrin nanopores“. Doctoral thesis, Università degli studi di Trieste, 2012. http://hdl.handle.net/10077/7735.
Der volle Inhalt der QuelleThe regulation of transmembrane ion transport is a fundamental aspect of bioinspired chemistry which may find relevant applications in different fields ranging from pharmaceutics to sensing. In this contest the ability to form stable and well organized structures able to produce large and well defined pore in the membrane appears really promising. Several examples of such systems are present in the literature, usually formed in self-assembling processes mediated by hydrogen bonding, charge repulsion, and ion pairing. Coordination chemistry, however, has appeared only occasionally in design strategies for synthetic ion channels and pores. Recently Kobuke reported synthetic nanopores based on covalent adduct of porphyrins having six carboxylic acid groups directed up and down; the formation of hydrogen bonds between two monomers promotes their stacking and the formation of a nanopore able to span the lipid bilayer. The covalent approach for this type of macromolecules is synthetically laborious and the developments are therefore limited. In this context, the self-assembly approach, in which the macromolecules are generated by self-assembly of small and more synthetically accessible building blocks, is an attractive way to achieve the aim. In this field trans-porphyrin provides a linear substitution pattern that can be used for the construction of porphyrin-based architectures with a well-defined structure by metal mediated self-assembly. We have started a research project aimed to design synthetic metal-organic nanopores derived from the self-assembling of porphyrin ligands with proper metal fragments. In our first approach we have used trans-dipyridylporphyrins (linear difunctional ligands) which, upon binding with metal fragments such as Re(I) or Pd(II) (cis-coordinant metal fragments) may form supramolecular boxes (4+4 type). Subsequently, the porphyrins have been functionalized with groups able to give hydrogen bonds after appropriate modification, such as esters. A second part of the work was focused on the study of the ionophoric activity of the prepared compounds. Activity studies have been conducted on porphyrins and molecular squares using liposomes as models of biological membranes. Porphyrins and molecular squares without groups able to give hydrogen bonding do not show ionophoric activity. This behavior was expected because the dimension of these systems does not allow to span completely the lipid bilayer and there are not weak interactions that promote the self-assembly of the monomers. On the contrary, excellent ionophoric activity was observed with the molecular square bearing carboxylic acid. Thus, presence of hydrogen bonding groups that enable the formation of tubular, probably dimeric, structure are essential for forming the transmembrane nanopore. Ionophoric activity can be inhibited by using polyamino-dendrimers and this ability is function of their dimension. Parallel to the development of supramolecular porphyrins based nanopores, in the course of my PhD period, I studied also the ionophoric activity of cyclic phosphate-linked oligosaccharide analogues (CyPLOS) and guanosine-based amphiphiles in collaboration with prof.ssa Daniela Montesarchio, Department of Organic Chemistry and Biochemistry, University “Federico II” of Napoli.
XXIV Ciclo
1984
Perret, Emilie. „Nez artificiel à transduction optique à base de matériaux sol-gel nanoporeux“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAS056/document.
Der volle Inhalt der Quelle989/5000The purpose of this thesis is to develop sol-gel porous matrices for microbial detection of microbial organic compounds for bacterial identification.The work revolved around the synthesis and optimization of materials on the one hand and then the analysis of volatile organic compounds (VOCs) on the other hand. This analysis was considered in two ways. The first was a global approach to microbial olfactory profiles. The second was a targeted approach to target VOCs of major importance.The synthesis of the material was carried out by sol-gel, the characteristic studies were carried out by nitrogen manometry and X-ray diffraction at small angles.Microbial detection, via our sol-gel material, is carried out by optical transduction. The Absorbance or Fluorescence spectrometries were considered in direct mode (without probe molecules) or in indirect mode (with probe molecules)
Chau, Michael, Hsinchun Chen, Jailun Qin, Yilu Zhou, Wai-Ki Sung, Mark Chen, Yi Qin, Daniel M. McDonald und Ann M. Lally. „NanoPort: A Web Portal for Nanoscale Science and Technology“. ACM/IEEE-CS, 2002. http://hdl.handle.net/10150/105926.
Der volle Inhalt der QuelleAreas related to nanotechnology, or nanoscale science and engineering (NSSE), have experienced tremendous growth over the past few years. While there are a large variety of useful resources available on the Web, such information are usually distributed and difficult to locate, resulting in the problem of information overload. To address the problem, we developed the NanoPort system, an integrated Web portal aiming to provide a one-stop shopping service to satisfy the information needs of researchers and practitioners in the field of NSSE [1]. We believe that the approaches taken also can be applied to other domains.
Bernhard, Max [Verfasser], Gerhard [Akademischer Betreuer] Thiel und Bodo [Akademischer Betreuer] Laube. „Binding Proteins and Receptor Binding Domains as Sensor Elements for Biological and Artificial Nanopores / Max Bernhard ; Gerhard Thiel, Bodo Laube“. Darmstadt : Universitäts- und Landesbibliothek, 2021. http://d-nb.info/1236344782/34.
Der volle Inhalt der QuelleHemmig, Elisa Alina. „DNA origami structures for artificial light-harvesting and optical voltage sensing“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274005.
Der volle Inhalt der QuelleCorkery, Robert, und robert corkery@anu edu au. „Artificial biomineralisation and metallic soaps“. The Australian National University. Research School of Physical Sciences and Engineering, 1998. http://thesis.anu.edu.au./public/adt-ANU20080124.190014.
Der volle Inhalt der QuelleBernhard, Max. „Binding Proteins and Receptor Binding Domains as Sensor Elements for Biological and Artificial Nanopores“. Phd thesis, 2021. https://tuprints.ulb.tu-darmstadt.de/18587/1/Dissertation_Max_Bernhard_2021.pdf.
Der volle Inhalt der QuelleBuchteile zum Thema "Nanopores artificiels"
Konnanath, Bharatan, Prasanna Sattigeri, Trupthi Mathew, Andreas Spanias, Shalini Prasad, Michael Goryll, Trevor Thornton und Peter Knee. „Acquiring and Classifying Signals from Nanopores and Ion-Channels“. In Artificial Neural Networks – ICANN 2009, 265–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04277-5_27.
Der volle Inhalt der QuelleNoy, Aleksandr, und Meni Wanunu. „Nanofluidic Transport and Sensing in Biological and Artificial Nanopores“. In An Introduction to Single Molecule Biophysics, 197–228. Boca Raton : Taylor & Francis, 2017. | Series: Foundations of biochemistry and biophysics: CRC Press, 2017. http://dx.doi.org/10.1201/b22505-6.
Der volle Inhalt der QuelleAntony, Rajini P. „Synthesis Aspects of Nanoporous and Quasi-One-Dimensional Thin Film Architecture Photoelectrodes for Artificial Photosynthesis“. In Handbook on Synthesis Strategies for Advanced Materials, 277–323. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-1803-1_8.
Der volle Inhalt der QuelleActis, Paolo, Boaz Vilozny und Nader Pourm. „Immunoassays Using Artificial Nanopores“. In Advances in Immunoassay Technology. InTech, 2012. http://dx.doi.org/10.5772/34489.
Der volle Inhalt der QuelleBALME, S., M. LEPOITEVIN, M. BECHELANY und J. M. JANOT. „HYBRID BIOLOGICAL/ARTIFICIAL NANOPORE“. In Physics, Chemistry and Applications of Nanostructures, 454–56. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814696524_0112.
Der volle Inhalt der QuelleAgrawal, Shreni, Richa Das, Shivangee Solanki, Simran Choudhury, Indrani Bhattacharya, Pradeep Kumar, Amit kumar Singh, Sunil Kumar Mishra und Kavindra Nath Tiwari. „An Introduction to Nanopriming for Sustainable Agriculture“. In Nanopriming Approach to Sustainable Agriculture, 1–19. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-7232-3.ch001.
Der volle Inhalt der QuelleYang, Y., L. Belfares, F. Larachi, B. P. A. Grandjean und A. Sayari. „Silica-CTAB-Water Phase Diagram at 150 °C: Predicting Phase Structure by Artificial Neural Network“. In Nanoporous Materials II, Proceedings of the 2nd Conference on Access in Nanoporous Materials, 871–78. Elsevier, 2000. http://dx.doi.org/10.1016/s0167-2991(00)80295-5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Nanopores artificiels"
Saharia, Jugal, Y. M. Nuwan D. Y. Bandara und Lokesh Saharan. „Molybdenum Disulfide Solid-State Nanopores for Single-Molecule Biosensing“. In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-116801.
Der volle Inhalt der QuelleMachado, Dijanah Cota. „NANOPOROS PROTEICOS E ARTIFICIAIS NO SENSORIAMENTO ESTOCÁSTICO“. In Encontro Anual da Biofísica 2017. São Paulo: Editora Blucher, 2017. http://dx.doi.org/10.5151/biofisica2017-039.
Der volle Inhalt der QuelleZhang, Cuiping, Jianbo Wang, Donghui Zhang, Donghui Feng, Xiaoqi Li und Jiaxu Shen. „Metasurface Holographic Imaging Based on Three-Nanopores“. In 2023 IEEE 3rd International Conference on Software Engineering and Artificial Intelligence (SEAI). IEEE, 2023. http://dx.doi.org/10.1109/seai59139.2023.10217500.
Der volle Inhalt der QuelleRoy, Shuvo, Anna Dubnisheva, Abigail Eldridge, Aaron J. Fleischman, Kenneth G. Goldman, H. David Humes, Andrew L. Zydney und William H. Fissell. „Silicon nanopore membrane technology for an implantable artificial kidney“. In TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2009. http://dx.doi.org/10.1109/sensor.2009.5285603.
Der volle Inhalt der QuelleChui, B. W., P. Taheri-Tehrani, N. Wright, J. Ly und S. Roy. „ROBUST "RIBBED" NANOPOROUS MEMBRANES FOR IMPLANTABLE BIO-ARTIFICIAL KIDNEYS“. In 2018 Solid-State, Actuators, and Microsystems Workshop. San Diego: Transducer Research Foundation, 2018. http://dx.doi.org/10.31438/trf.hh2018.28.
Der volle Inhalt der QuelleShoji, Kan, und Shogo Ikarashi. „Probe-Type Artificial Cell Membranes Formed with Nanopore-Modified Gold Needles“. In 2022 IEEE International Conference on Cyborg and Bionic Systems (CBS). IEEE, 2023. http://dx.doi.org/10.1109/cbs55922.2023.10115352.
Der volle Inhalt der QuelleYasuga, Hiroki, Ryuji Kawano, Masahiro Takinoue, Yutaro Tsuji, Toshihisa Osaki, Koki Kamiya, Norihisa Miki und Shoji Takeuchi. „Logic gate using artificial cell-membrane: NAND operation by transmembrane DNA via a biological nanopore“. In 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2013. http://dx.doi.org/10.1109/memsys.2013.6474417.
Der volle Inhalt der QuelleMustafa, Kamarul 'Asyikin, Jumril Yunas, Azrul Azlan Hamzah und Burhanuddin Yeop Majlis. „Application of BOE and KOH+IPA for fabrication of smooth nanopore membrane surface for artificial kidney“. In 2017 IEEE Regional Symposium on Micro- and Nanoelectronics (RSM). IEEE, 2017. http://dx.doi.org/10.1109/rsm.2017.8069130.
Der volle Inhalt der QuelleChiu, Justin N. W., Rahmatollah Khodabandeh und Richard Furberg. „Advanced Thermosyphon Cooling With Nanoporous Structured Mini Channel Evaporators“. In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18251.
Der volle Inhalt der QuelleIarossi, Marzia, Daniel Darvill, Jian-An Huang, Aliaksandr Hubarevich, Yingqi Zhao und F. De Angelis. „Plasmonic nanopore array to detect translocating DNA and proteins at single molecule level by Raman Spectroscopy“. In 2023 Seventeenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). IEEE, 2023. http://dx.doi.org/10.1109/metamaterials58257.2023.10289343.
Der volle Inhalt der Quelle