Zeitschriftenartikel zum Thema „NanoLuciferase“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "NanoLuciferase" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Sfarcic, Ivana, Theresa Bui, Erin C. Daniels und Emily R. Troemel. „Nanoluciferase-Based Method for Detecting Gene Expression in Caenorhabditis elegans“. Genetics 213, Nr. 4 (04.10.2019): 1197–207. http://dx.doi.org/10.1534/genetics.119.302655.
Der volle Inhalt der QuellePulkina, A. A., E. A. Romanovskaya-Romanko, A. S. Mustafaeva, A. Yu Egorov und M. A. Stukova. „Rapid Neutralizing Antibody Assessment Using Influenza Viruses with Luciferase Reporter“. Biotekhnologiya 37, Nr. 2 (2021): 81–91. http://dx.doi.org/10.21519/0234-2758-2021-37-2-81-91.
Der volle Inhalt der QuelleSahihi, Mehdi, Juan Sanz García und Isabelle Navizet. „Bioluminescent Nanoluciferase–Furimamide Complex: A Theoretical Study on Different Protonation States“. Journal of Physical Chemistry B 124, Nr. 13 (10.03.2020): 2539–48. http://dx.doi.org/10.1021/acs.jpcb.9b11597.
Der volle Inhalt der QuelleWires, Emily S., Doug Howard, Mark J. Henderson, Xiaokang Yan, Kathleen A. Trychta, Emily J. Heathward, Yajun Zhang, Molly Lutrey, Christopher Richie und Brandon K. Harvey. „218. Monitoring ER Stress Activation of the ATF6 Pathway Using Nanoluciferase“. Molecular Therapy 24 (Mai 2016): S85. http://dx.doi.org/10.1016/s1525-0016(16)33027-1.
Der volle Inhalt der QuelleDegrelle, Séverine A., Hussein Shoaito und Thierry Fournier. „New Transcriptional Reporters to Quantify and Monitor PPARγ Activity“. PPAR Research 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/6139107.
Der volle Inhalt der QuelleCalverley, Ben C., Karl E. Kadler und Adam Pickard. „Dynamic High-Sensitivity Quantitation of Procollagen-I by Endogenous CRISPR-Cas9 NanoLuciferase Tagging“. Cells 9, Nr. 9 (10.09.2020): 2070. http://dx.doi.org/10.3390/cells9092070.
Der volle Inhalt der QuelleAbe, Taisho, Riku Nagai, Hiroaki Imataka und Nono Takeuchi-Tomita. „Reconstitution of yeast translation elongation and termination in vitro utilizing CrPV IRES-containing mRNA“. Journal of Biochemistry 167, Nr. 5 (16.03.2020): 441–50. http://dx.doi.org/10.1093/jb/mvaa021.
Der volle Inhalt der QuelleKim, Jiho, und Regis Grailhe. „Nanoluciferase signal brightness using furimazine substrates opens bioluminescence resonance energy transfer to widefield microscopy“. Cytometry Part A 89, Nr. 8 (03.05.2016): 742–46. http://dx.doi.org/10.1002/cyto.a.22870.
Der volle Inhalt der QuelleZhang, Lei, Ge Song, Ting Xu, Qing-Ping Wu, Xiao-Xia Shao, Ya-Li Liu, Zeng-Guang Xu und Zhan-Yun Guo. „A novel ultrasensitive bioluminescent receptor-binding assay of INSL3 through chemical conjugation with nanoluciferase“. Biochimie 95, Nr. 12 (Dezember 2013): 2454–59. http://dx.doi.org/10.1016/j.biochi.2013.09.008.
Der volle Inhalt der QuelleJi, Ben-Jun, Ge Song, Zhou Zhang und Zhan-Yun Guo. „Efficient overexpression of human interleukin-6 in Escherichia coli using nanoluciferase as a fusion partner“. Process Biochemistry 50, Nr. 10 (Oktober 2015): 1618–22. http://dx.doi.org/10.1016/j.procbio.2015.06.008.
Der volle Inhalt der QuelleSilberstein, Erica, Carylinda Serna, Stenio Perdigão Fragoso, Rana Nagarkatti und Alain Debrabant. „A novel nanoluciferase-based system to monitor Trypanosoma cruzi infection in mice by bioluminescence imaging“. PLOS ONE 13, Nr. 4 (19.04.2018): e0195879. http://dx.doi.org/10.1371/journal.pone.0195879.
Der volle Inhalt der QuelleWhite, Carl W., Birgit Caspar, Hannah K. Vanyai, Kevin D. G. Pfleger und Stephen J. Hill. „CRISPR-Mediated Protein Tagging with Nanoluciferase to Investigate Native Chemokine Receptor Function and Conformational Changes“. Cell Chemical Biology 27, Nr. 5 (Mai 2020): 499–510. http://dx.doi.org/10.1016/j.chembiol.2020.01.010.
Der volle Inhalt der QuelleLaschet, Céline, Nadine Dupuis und Julien Hanson. „A dynamic and screening-compatible nanoluciferase-based complementation assay enables profiling of individual GPCR–G protein interactions“. Journal of Biological Chemistry 294, Nr. 11 (28.12.2018): 4079–90. http://dx.doi.org/10.1074/jbc.ra118.006231.
Der volle Inhalt der QuelleDuyên, Trần Thị Mỹ, und Trần Thị Tuyết Hoa. „Nghiên cứu tạo protein tín hiệu nanoluciferase: Ứng dụng tạo cảm biến sinh học nhận diện kháng sinh“. Can Tho University Journal of Science 56(2) (2020): 146. http://dx.doi.org/10.22144/ctu.jvn.2020.041.
Der volle Inhalt der QuelleRen, Wenjie, Zhenfeng Li, Yang Xu, Debin Wan, Bogdan Barnych, Yanping Li, Zhui Tu, Qinghua He, Jinheng Fu und Bruce D. Hammock. „One-Step Ultrasensitive Bioluminescent Enzyme Immunoassay Based on Nanobody/Nanoluciferase Fusion for Detection of Aflatoxin B1 in Cereal“. Journal of Agricultural and Food Chemistry 67, Nr. 18 (18.03.2019): 5221–29. http://dx.doi.org/10.1021/acs.jafc.9b00688.
Der volle Inhalt der QuelleWang, Feng, Zhen-Feng Li, De-Bin Wan, Natalia Vasylieva, Yu-Dong Shen, Zhen-Lin Xu, Jin-Yi Yang et al. „Enhanced Non-Toxic Immunodetection of Alternaria Mycotoxin Tenuazonic Acid Based on Ferritin-Displayed Anti-Idiotypic Nanobody-Nanoluciferase Multimers“. Journal of Agricultural and Food Chemistry 69, Nr. 16 (18.04.2021): 4911–17. http://dx.doi.org/10.1021/acs.jafc.1c01128.
Der volle Inhalt der QuelleAzad, Taha, Ragunath Singaravelu, Emily E. F. Brown, Zaid Taha, Reza Rezaei, Rozanne Arulanandam, Stephen Boulton, Jean-Simon Diallo, Carolina S. Ilkow und John C. Bell. „SARS-CoV-2 S1 NanoBiT: A nanoluciferase complementation-based biosensor to rapidly probe SARS-CoV-2 receptor recognition“. Biosensors and Bioelectronics 180 (Mai 2021): 113122. http://dx.doi.org/10.1016/j.bios.2021.113122.
Der volle Inhalt der QuelleLi, Wan, Mengjia Zhang, Huijun Zheng, Peng Zhou, Zheng Liu, Anan Jongkaewwattana, Rui Luo und Qigai He. „Construction of a Recombinant Porcine Epidemic Diarrhea Virus Encoding Nanoluciferase for High-Throughput Screening of Natural Antiviral Products“. Viruses 13, Nr. 9 (18.09.2021): 1866. http://dx.doi.org/10.3390/v13091866.
Der volle Inhalt der QuelleHuang, Yikun, André O’Reilly Beringhs, Qi Chen, Donghui Song, Wilfred Chen, Xiuling Lu, Tai-Hsi Fan, Mu-Ping Nieh und Yu Lei. „Genetically Engineered Bacterial Outer Membrane Vesicles with Expressed Nanoluciferase Reporter for in Vivo Bioluminescence Kinetic Modeling through Noninvasive Imaging“. ACS Applied Bio Materials 2, Nr. 12 (26.11.2019): 5608–15. http://dx.doi.org/10.1021/acsabm.9b00690.
Der volle Inhalt der QuelleLi, Zhenfeng, Yi Wang, Natalia Vasylieva, Debin Wan, Zihan Yin, Jiexian Dong und Bruce D. Hammock. „An Ultrasensitive Bioluminescent Enzyme Immunoassay Based on Nanobody/Nanoluciferase Heptamer Fusion for the Detection of Tetrabromobisphenol A in Sediment“. Analytical Chemistry 92, Nr. 14 (19.06.2020): 10083–90. http://dx.doi.org/10.1021/acs.analchem.0c01908.
Der volle Inhalt der QuelleWang, Feng, Zhen-Feng Li, Yuan-Yuan Yang, De-Bin Wan, Natalia Vasylieva, Yu-Qi Zhang, Jun Cai et al. „Chemiluminescent Enzyme Immunoassay and Bioluminescent Enzyme Immunoassay for Tenuazonic Acid Mycotoxin by Exploitation of Nanobody and Nanobody–Nanoluciferase Fusion“. Analytical Chemistry 92, Nr. 17 (24.07.2020): 11935–42. http://dx.doi.org/10.1021/acs.analchem.0c02338.
Der volle Inhalt der QuelleVasudevan, Lakshmi, und Christophe P. Stove. „A novel nanobody-based bio-assay using functional complementation of a split nanoluciferase to monitor Mu- opioid receptor activation“. Analytical and Bioanalytical Chemistry 412, Nr. 29 (14.09.2020): 8015–22. http://dx.doi.org/10.1007/s00216-020-02945-6.
Der volle Inhalt der QuelleAzad, Taha, Ragunath Singaravelu, Zaid Taha, Taylor R. Jamieson, Stephen Boulton, Mathieu J. F. Crupi, Nikolas T. Martin et al. „Nanoluciferase complementation-based bioreporter reveals the importance of N-linked glycosylation of SARS-CoV-2 S for viral entry“. Molecular Therapy 29, Nr. 6 (Juni 2021): 1984–2000. http://dx.doi.org/10.1016/j.ymthe.2021.02.007.
Der volle Inhalt der QuelleSong, Ge, Qing-Ping Wu, Ting Xu, Ya-Li Liu, Zeng-Guang Xu, Shi-Fu Zhang und Zhan-Yun Guo. „Quick preparation of nanoluciferase-based tracers for novel bioluminescent receptor-binding assays of protein hormones: Using erythropoietin as a model“. Journal of Photochemistry and Photobiology B: Biology 153 (Dezember 2015): 311–16. http://dx.doi.org/10.1016/j.jphotobiol.2015.10.014.
Der volle Inhalt der QuelleYu, Sheng, Zhenfeng Li, Jingzhang Li, Shimei Zhao, Shanguang Wu, Hongjing Liu, Xiongjie Bi et al. „Generation of dual functional nanobody-nanoluciferase fusion and its potential in bioluminescence enzyme immunoassay for trace glypican-3 in serum“. Sensors and Actuators B: Chemical 336 (Juni 2021): 129717. http://dx.doi.org/10.1016/j.snb.2021.129717.
Der volle Inhalt der QuelleHe, Sheng-Xiang, Ge Song, Jia-Ping Shi, Yu-Qi Guo und Zhan-Yun Guo. „Nanoluciferase as a novel quantitative protein fusion tag: Application for overexpression and bioluminescent receptor-binding assays of human leukemia inhibitory factor“. Biochimie 106 (November 2014): 140–48. http://dx.doi.org/10.1016/j.biochi.2014.08.012.
Der volle Inhalt der QuelleLiu, Yu, Ge Song, Xiao-Xia Shao, Ya-Li Liu und Zhan-Yun Guo. „Quantitative measurement of cell membrane receptor internalization by the nanoluciferase reporter: Using the G protein-coupled receptor RXFP3 as a model“. Biochimica et Biophysica Acta (BBA) - Biomembranes 1848, Nr. 2 (Februar 2015): 688–94. http://dx.doi.org/10.1016/j.bbamem.2014.11.026.
Der volle Inhalt der QuelleKim, Dae Gyu, Chul Min Park, Srigouri Huddar, Semi Lim, Sunghoon Kim und Sunkyung Lee. „Anticancer Activity of Pyrimethamine via Ubiquitin Mediated Degradation of AIMP2-DX2“. Molecules 25, Nr. 12 (15.06.2020): 2763. http://dx.doi.org/10.3390/molecules25122763.
Der volle Inhalt der QuelleWouters, Elise, Adrián Marín, James Dalton, Jesús Giraldo und Christophe Stove. „Distinct Dopamine D2 Receptor Antagonists Differentially Impact D2 Receptor Oligomerization“. International Journal of Molecular Sciences 20, Nr. 7 (04.04.2019): 1686. http://dx.doi.org/10.3390/ijms20071686.
Der volle Inhalt der QuelleAli, Amanat, Elizabeth K. M. Johnstone, Bincy Baby, Heng B. See, Angela Song, K. Johan Rosengren, Kevin D. G. Pfleger, Mohammed Akli Ayoub und Ranjit Vijayan. „Insights into the Interaction of LVV-Hemorphin-7 with Angiotensin II Type 1 Receptor“. International Journal of Molecular Sciences 22, Nr. 1 (28.12.2020): 209. http://dx.doi.org/10.3390/ijms22010209.
Der volle Inhalt der QuelleSpillmann, Martin, Larissa Thurner, Nina Romantini, Mirjam Zimmermann, Benoit Meger, Martin Behe, Maria Waldhoer, Gebhard F. X. Schertler und Philipp Berger. „New Insights into Arrestin Recruitment to GPCRs“. International Journal of Molecular Sciences 21, Nr. 14 (13.07.2020): 4949. http://dx.doi.org/10.3390/ijms21144949.
Der volle Inhalt der QuelleNagai, Riku, Yichen Xu, Chang Liu, Ayaka Shimabukuro und Nono Takeuchi-Tomita. „In Vitro Reconstitution of Yeast Translation System Capable of Synthesizing Long Polypeptide and Recapitulating Programmed Ribosome Stalling“. Methods and Protocols 4, Nr. 3 (04.07.2021): 45. http://dx.doi.org/10.3390/mps4030045.
Der volle Inhalt der QuelleSaxena, Gauri, James M. Moore, Meleri Jones, Gareth Pryce, Liaqat Ali, Georgia R. Leisegang, Vivek Vijay et al. „Detecting and predicting neutralization of alemtuzumab responses in MS“. Neurology - Neuroimmunology Neuroinflammation 7, Nr. 4 (04.06.2020): e767. http://dx.doi.org/10.1212/nxi.0000000000000767.
Der volle Inhalt der QuelleZhang, Wei, Terunao Takahara, Takuya Achiha, Hideki Shibata und Masatoshi Maki. „Nanoluciferase Reporter Gene System Directed by Tandemly Repeated Pseudo-Palindromic NFAT-Response Elements Facilitates Analysis of Biological Endpoint Effects of Cellular Ca2+ Mobilization“. International Journal of Molecular Sciences 19, Nr. 2 (18.02.2018): 605. http://dx.doi.org/10.3390/ijms19020605.
Der volle Inhalt der QuelleSherwood, Laura J., und Andrew Hayhurst. „Periplasmic Nanobody-APEX2 Fusions Enable Facile Visualization of Ebola, Marburg, and Mĕnglà virus Nucleoproteins, Alluding to Similar Antigenic Landscapes among Marburgvirus and Dianlovirus“. Viruses 11, Nr. 4 (20.04.2019): 364. http://dx.doi.org/10.3390/v11040364.
Der volle Inhalt der QuelleHenderson, Mark J., Marc A. Holbert, Anton Simeonov und Lorena A. Kallal. „High-Throughput Cellular Thermal Shift Assays in Research and Drug Discovery“. SLAS DISCOVERY: Advancing the Science of Drug Discovery 25, Nr. 2 (30.09.2019): 137–47. http://dx.doi.org/10.1177/2472555219877183.
Der volle Inhalt der QuelleKumar, Binod, Grant M. Hawkins, Tom Kicmal, Enya Qing, Emily Timm und Tom Gallagher. „Assembly and Entry of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2): Evaluation Using Virus-Like Particles“. Cells 10, Nr. 4 (09.04.2021): 853. http://dx.doi.org/10.3390/cells10040853.
Der volle Inhalt der QuelleGornalusse, Germán Gustavo, Lucia N. Vojtech, Claire N. Levy, Sean M. Hughes, Yeseul Kim, Rogelio Valdez, Urvashi Pandey et al. „Buprenorphine Increases HIV-1 Infection In Vitro but Does Not Reactivate HIV-1 from Latency“. Viruses 13, Nr. 8 (27.07.2021): 1472. http://dx.doi.org/10.3390/v13081472.
Der volle Inhalt der QuelleVickers, Timothy A., Meghdad Rahdar, Thazha P. Prakash und Stanley T. Crooke. „Kinetic and subcellular analysis of PS-ASO/protein interactions with P54nrb and RNase H1“. Nucleic Acids Research 47, Nr. 20 (09.09.2019): 10865–80. http://dx.doi.org/10.1093/nar/gkz771.
Der volle Inhalt der QuelleLi, Jie, Xiaoxu Wang, Gaopan Dong, Chongzheng Yan, Yuanyuan Cui, Zheng Zhang, Lupei Du und Minyong Li. „Novel furimazine derivatives for nanoluciferase bioluminescence with various C-6 and C-8 substituents“. Organic & Biomolecular Chemistry, 2021. http://dx.doi.org/10.1039/d1ob01098k.
Der volle Inhalt der QuelleLee, Muhoon, Noriko Matsunaga, Shiori Akabane, Ippei Yasuda, Takuya Ueda und Nono Takeuchi-Tomita. „Reconstitution of mammalian mitochondrial translation system capable of correct initiation and long polypeptide synthesis from leaderless mRNA“. Nucleic Acids Research, 09.12.2020. http://dx.doi.org/10.1093/nar/gkaa1165.
Der volle Inhalt der QuelleWhite, Carl W., Laura E. Kilpatrick, Kevin D. G. Pfleger und Stephen J. Hill. „A Nanoluciferase biosensor to investigate endogenous chemokine secretion and receptor binding“. iScience, Dezember 2020, 102011. http://dx.doi.org/10.1016/j.isci.2020.102011.
Der volle Inhalt der QuelleLin, Jing-Yi, Kuo-Feng Weng, Chih-Kuang Chang, Yu-Nong Gong, Guo-Jen Huang, Hui-Lan Lee, Yen-Cheng Chen et al. „Enterovirus A71 Induces Neurological Diseases and Dynamic Variants in Oral Infection of Human SCARB2-Transgenic Weaned Mice“. Journal of Virology, 11.08.2021. http://dx.doi.org/10.1128/jvi.00897-21.
Der volle Inhalt der QuelleJain, Paras, Spencer Garing, Deepshikha Verma, Rajagopalan Saranathan, Nicholas Clute-Reinig, Jacob Gadwa, Chelsea Peterson et al. „Nanoluciferase Reporter Mycobacteriophage for Sensitive and Rapid Detection of Mycobacterium tuberculosis Drug Susceptibility“. Journal of Bacteriology 202, Nr. 22 (08.09.2020). http://dx.doi.org/10.1128/jb.00411-20.
Der volle Inhalt der Quelle„Using the newly developed nanoluciferase as an ultrasensitive bioluminescent probe for ligand-receptor interaction studies“. Receptors & Clinical Investigation, 15.04.2014. http://dx.doi.org/10.14800/rci.116.
Der volle Inhalt der QuelleLi, Hong, Caiyun Wu, Manman Du, Yache Chen, Xin Hou, Yinong Yang und Kabin Xie. „A versatile nanoluciferase toolkit and optimized in-gel detection method for protein analysis in plants“. Molecular Breeding 41, Nr. 2 (Februar 2021). http://dx.doi.org/10.1007/s11032-021-01210-7.
Der volle Inhalt der QuelleOliveira, Débora Moraes de, Igor de Andrade Santos, Daniel Oliveira Silva Martins, Yasmim Garcia Gonçalves, Léia Cardoso-Sousa, Robinson Sabino-Silva, Gustavo Von Poelhsitz et al. „Organometallic Complex Strongly Impairs Chikungunya Virus Entry to the Host Cells“. Frontiers in Microbiology 11 (15.12.2020). http://dx.doi.org/10.3389/fmicb.2020.608924.
Der volle Inhalt der QuelleOliveira, Débora Moraes de, Igor de Andrade Santos, Daniel Oliveira Silva Martins, Yasmim Garcia Gonçalves, Léia Cardoso-Sousa, Robinson Sabino-Silva, Gustavo Von Poelhsitz et al. „Organometallic Complex Strongly Impairs Chikungunya Virus Entry to the Host Cells“. Frontiers in Microbiology 11 (15.12.2020). http://dx.doi.org/10.3389/fmicb.2020.608924.
Der volle Inhalt der QuelleYao, Zhong, Luka Drecun, Farzaneh Aboualizadeh, Sun Jin Kim, Zhijie Li, Heidi Wood, Emelissa J. Valcourt et al. „A homogeneous split-luciferase assay for rapid and sensitive detection of anti-SARS CoV-2 antibodies“. Nature Communications 12, Nr. 1 (22.03.2021). http://dx.doi.org/10.1038/s41467-021-22102-6.
Der volle Inhalt der QuelleXie, Xuping, Antonio E. Muruato, Xianwen Zhang, Kumari G. Lokugamage, Camila R. Fontes-Garfias, Jing Zou, Jianying Liu et al. „A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19“. Nature Communications 11, Nr. 1 (15.10.2020). http://dx.doi.org/10.1038/s41467-020-19055-7.
Der volle Inhalt der Quelle