Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Nanofiltration“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Nanofiltration" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Nanofiltration"
khan, Nida tabassum. „Nanofiltration-Concept and Prospects“. Pharmaceutics and Pharmacology Research 4, Nr. 4 (03.12.2021): 01–04. http://dx.doi.org/10.31579/2693-7247/047.
Der volle Inhalt der QuelleRamli, Mohd Redzuan, Nik Meriam Nik Sulaiman, Mustafa Ali Mohd und Mohamad Fairus Rabuni. „Performance of chlorination process during nanofiltration of sulfonamide antibiotic“. Water Science and Technology 72, Nr. 9 (20.07.2015): 1611–20. http://dx.doi.org/10.2166/wst.2015.367.
Der volle Inhalt der QuelleLiu, Xi, und Wei Wang. „The Application of Nanofiltration Technology in Recovery of Ionic Liquids from Spinning Wastewater“. Applied Mechanics and Materials 178-181 (Mai 2012): 499–502. http://dx.doi.org/10.4028/www.scientific.net/amm.178-181.499.
Der volle Inhalt der QuelleLiikanen, R., H. Kiuru, T. Tuhkanen und M. Nyström. „Nanofiltration membrane fouling by conventionally treated surface water“. Water Supply 3, Nr. 5-6 (01.12.2003): 183–90. http://dx.doi.org/10.2166/ws.2003.0165.
Der volle Inhalt der QuelleWeng, Rengui, Guohong Chen, Xin He, Jie Qin, Shuo Dong, Junjiang Bai, Shaojie Li und Shikang Zhao. „The Performance of Cellulose Composite Membranes and Their Application in Drinking Water Treatment“. Polymers 16, Nr. 2 (20.01.2024): 285. http://dx.doi.org/10.3390/polym16020285.
Der volle Inhalt der QuelleKhramtsov, A. G., und V. N. Sergeev. „Technological breakthrough of the agrarian-and-food innovations in dairy case for example of universal agricultural raw materials. Nanofiltration“. Agrarian-And-Food Innovations 12 (25.12.2020): 7–19. http://dx.doi.org/10.31208/2618-7353-2020-12-7-19.
Der volle Inhalt der QuelleInouye, Masaharu, und Thierry Burnouf. „The Role of Nanofiltration in the Pathogen Safety of Biologicals: An Update“. Current Nanoscience 16, Nr. 3 (02.04.2020): 413–24. http://dx.doi.org/10.2174/1573413715666190328223130.
Der volle Inhalt der QuelleChang, F. F., und W. J. Liu. „Arsenate removal using a combination treatment of precipitation and nanofiltration“. Water Science and Technology 65, Nr. 2 (01.01.2012): 296–302. http://dx.doi.org/10.2166/wst.2012.833.
Der volle Inhalt der QuelleWang, Xin Miao, und Hai Yan Yang. „The Nanofiltration Technology of Metoprolol in the Water Environment“. Advanced Materials Research 955-959 (Juni 2014): 1013–19. http://dx.doi.org/10.4028/www.scientific.net/amr.955-959.1013.
Der volle Inhalt der QuelleLiu, Qian Ying, Jun Rui Wu, Yi Ming Liu und Ri Na Wu. „The Desalination Effect Comparison of Two Kinds of Nanofiltration Membrane“. Applied Mechanics and Materials 508 (Januar 2014): 40–43. http://dx.doi.org/10.4028/www.scientific.net/amm.508.40.
Der volle Inhalt der QuelleDissertationen zum Thema "Nanofiltration"
Makowski, Marcin. „Solvent nanofiltration for purifying pharmaceuticals“. Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/29227.
Der volle Inhalt der QuelleWelfoot, J. St J. „Predictive modelling of membrane nanofiltration“. Thesis, Swansea University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.639377.
Der volle Inhalt der QuelleCluff, C. Brent. „Slowsand/Nanofiltration of Surface Water“. Arizona-Nevada Academy of Science, 1991. http://hdl.handle.net/10150/296460.
Der volle Inhalt der QuelleSince the spring of 1988 the University of Arizona has conducted nanofiltration research. The major emphasis has been the treatment of both Colorado River Water and municipal effluent. The work has been sponsored by the John F. Long Foundation Inc. and the Consolidated Water Utilities, Phoenix Az. Nanofiltration is a low pressure form of reverse osmosis. It operates at about 1/3 the pressure and 3 times the flux rate of older brackish water reverse osmosis systems. This reduces both the cost as well as the operating costs to approximately 1 /10 of the older reverse osmosis systems. The City of Ft Myers is projecting costs as low as $0.50-0.60/1000 gallons for their 20 MGD plant. Nanofiltration treats water the way it needs to be treated to meet the Environmental Protection Agency's (EPA) present minimum contamination levels (MCL) as well as projected future levels. Nanofiltration removes most of the bivalent inorganic molecules such as calcium and magnesium as well as some monovalent molecules such as sodium and chloride. It also removes pathogens and dissolved organics, thus reducing the trihalomethane formation potential (THMFP). The research on recharged effluent municipal effluent below the 91st Avenue Plant in Phoenix has shown the value of nanofiltration for reclaiming municipal wastewater to potable standards. A 20,000 GPD slowsand /nanofiltration pilot plant at Apache Junction has shown the effectiveness of the treatment on Colorado River Water at a 95% recovery over the past 2 years.
Tanardi, Cheryl Raditya. „Organically-modified ceramic membranes for solvent nanofiltration : fabrication and transport studies“. Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS259/document.
Der volle Inhalt der QuelleSolvent nanofiltration is a potential technology to recover solvents. For this application, a chemically stable membrane that can endure continuous exposure towards organic solvents is required. This thesis deals with the preparation of chemically stable NF membranes through modification of mesoporous ceramic substrate by means of grafting and studying of their solvent and solute transport properties. In Chapter 1, the background of the grafting technique as well as studies on the SRNF transport behavior found in the literature was presented.In Chapter 2 and 6 of this thesis, mesoporous y-alumina UF membranes were grafted by hydrophobic and hydrophilic organic moieties to decrease the membrane pore diameter of the existing y-alumina UF membrane down to the nanofiltration range. In Chapter 5, the use of coupling agent to couple the grafted moiety forming a polymer network inside the ceramic pores during grafting results in a smaller membrane pore, but at the cost of a lower solvent permeability, when compared with PDMS-grafted alumina membranes where no coupling was applied. In Chapter 6, the grafting performance of γ-Al2O3 powder with various PEG grafting agents having different molecular weights, alkoxy groups, and ureido functionalities were analysed by TGA, 29Si-NMR, FTIR, and BET. The grafting densities are influenced by the molecular weights, the presence of the ureido functionality, and the number of hydrolyzable groups of the grafting agents. The transport behavior of PDMS grafted ceramic membranes and PEG grafted ceramic membranes were studied in Chapter 3, 4, and 6. In Chapter 3, the solvent transport behavior of PDMS grafted ceramic membranes was described by incorporating solvent sorption terms in the Hagen-Pouiseuille equation. A more closed membrane structure is realized when the solvent is strongly sorbed in the grafted moiety. In Chapter 4, the applicability of the existing solute rejection models based on size-exclusion mechanism to describe the solute rejection of membranes towards different types of solvent and solute were assessed. A strong function of rejection behavior with the ratio of the solute diameter versus the membrane pore diameter was observed, indicating that the size-exclusion mechanism may be applicable. Three rejection models based on size-exclusion, namely the Ferry, Verniory, and SHP models were used to predict the rejection of several solutes using pore diameter information from the N2 physisorption measurement when no solvent is present. For dye, PS, and PEG solutes in toluene, the experimental data fall well above the predicted σ for Ferry, Verniory, and SHP model suggesting that the membrane actual pore diameter in the presence of strongly sorbed solvent like toluene is smaller than that when no solvent is present, assuming that there is no important solvent-solute or solute-membrane interaction present in the observed rejection behavior. This may explain the higher rejection of solutes in nonpolar solvents like toluene than that in polar solvents such as isopropanol for PDMS grafted ceramic membranes. In Chapter 6, the permeability behavior of PEG grafted y-alumina membranes with respect to different types of permeating solvent (polar and nonpolar) was studied. A linear relationship between flux and TMP was observed, as was also found for PDMS grafted y-Al2O3 membranes. This indicates the absence of shear-flow induced behaviour in the applied TMP. A higher selectivity of Sudan Black in ethanol than in hexane accompanied by a lower permeability of ethanol than hexane were observed. Here also this phenomenon is explained by the difference in solvent sorption of the grafted moiety for different types of permeating solvents. Finally, the general conclusions and future work are presented in Chapter 7
Da, Silva Burgal Joao Porfirio. „Development of poly (ether ether ketone) nanofiltration membranes for organic solvent nanofiltration in continuous flow systems“. Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/43328.
Der volle Inhalt der QuelleKarabacak, Asli. „Sulphate Removal By Nanofiltration From Water“. Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612748/index.pdf.
Der volle Inhalt der Quellelkü
Yetis Co-advisor: Prof. Dr. Mehmet Kitis December 2010, 152 pages Excess sulphate in drinking water poses a problem due to adverse effects on human health and also due to aesthetic reasons. This study examines the nanofiltration (NF) of sulphate in surface water using a laboratory cross-flow device in total recycle mode. In the study, three NF membranes, namely DK-NF, DL-NF and NF-270, are used. The influence of the main operating conditions (transmembrane pressure, tangential velocity and membrane type) on the steady-state permeates fluxes and the retention of sulphate are evaluated. Kizilirmak River water is used as the raw water sample. During the experimental studies, the performance of NF is assessed in terms of the parameters of UVA254, sulphate, TOC and conductivity of the feed and permeates waters. Results indicated that NF could reduce sulphate levels in the surface water to a level below the guideline values, with a removal efficiency of around 98% with all three membranes. DK-NF and NF-270 membranes showed fouling when the surface water was fed directly to the system without any pre-treatment. MF was found to be an effective pretreatment option for the prevention of the membrane fouling, but no further removal of sulphate was achieved. Parametric study was also conducted. No change in flux values and in the removal of sulphate was observed when the crossflow velocity was lowered. The flux values were decreased as the transmembrane pressure was lowered
however there were not any decrease in the sulphate removal efficiency.
Artuğ, Gamze. „Modelling and simulation of nanofiltration membranes“. Göttingen Cuvillier, 2007. http://d-nb.info/986774685/04.
Der volle Inhalt der QuelleWong, Hau To. „Solvent nanofiltration for organometallic catalysed reactions“. Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429120.
Der volle Inhalt der QuelleMohammad, A. W. „Predictive models for nanofiltration membrane processes“. Thesis, Swansea University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638212.
Der volle Inhalt der QuelleCheng, S. „Improved nanofiltration membranes by self-assembly“. Thesis, Swansea University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636243.
Der volle Inhalt der QuelleBücher zum Thema "Nanofiltration"
Mohammad, Abdul, Teow Yeit Haan und Nidal Hilal. Nanofiltration for Sustainability. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003261827.
Der volle Inhalt der QuelleBergman, Robert. Reverse osmosis and nanofiltration. 2. Aufl. Denver, CO: American Water Works Association, 2007.
Den vollen Inhalt der Quelle findenI, Schäfer A., Fane A. G und Waite Thomas D, Hrsg. Nanofiltration: Principles and applications. Oxford: Elsevier Advanced Technology, 2005.
Den vollen Inhalt der Quelle findenI, Schaefer A., Fane A. G und Waite Thomas D, Hrsg. Nanofiltration: Principles and applications. New York: Elsevier Advanced Technology, 2003.
Den vollen Inhalt der Quelle findenAhmad, Akil, und Mohammed B. Alshammari, Hrsg. Nanofiltration Membrane for Water Purification. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5315-6.
Der volle Inhalt der QuelleTanninen, Jukka. Importance of charge in nanofiltration. Lappeenranta: Lappeenranta University of Technology, 2004.
Den vollen Inhalt der Quelle findenS, Taylor J., und Risk Reduction Engineering Laboratory (U.S.), Hrsg. Synthetic organic compound rejection by nanofiltration. Cincinnati, OH: U.S. Environmental Protection Agency, Risk Reduction Engineering Laboratory, 1990.
Den vollen Inhalt der Quelle findenTimmer, Johannes Martinus Koen. Properties of nanofiltration membranes: Model development and industrial application. Eindhoven: Technische Universiteit Eindhoven, 2001.
Den vollen Inhalt der Quelle findenE, Drewes Jörg, AWWA Research Foundation, WateReuse Foundation und West Basin Municipal Water District (Calif.), Hrsg. Comparing nanofiltration and reverse osmosis for treating recycled water. Denver, CO: Awwa Research Foundation, 2008.
Den vollen Inhalt der Quelle findenE, Drewes Jörg, AWWA Research Foundation, WateReuse Foundation und West Basin Municipal Water District (Calif.), Hrsg. Comparing nanofiltration and reverse osmosis for treating recycled water. Denver, CO: Awwa Research Foundation, 2008.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Nanofiltration"
Melin, Thomas, und Robert Rautenbach. „Nanofiltration“. In Membranverfahren, 277–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08653-7_10.
Der volle Inhalt der QuelleRautenbach, Robert. „Nanofiltration“. In Membranverfahren, 176–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-08655-1_9.
Der volle Inhalt der QuelleMänttäri, Mika, Bart Van der Bruggen und Marianne Nyström. „Nanofiltration“. In Separation and Purification Technologies in Biorefineries, 233–58. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118493441.ch9.
Der volle Inhalt der QuelleFievet, Patrick. „Nanofiltration“. In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_1720-1.
Der volle Inhalt der QuelleAgrawal, Komal, und Pradeep Verma. „Nanofiltration“. In Bio-Nano Filtration in Industrial Effluent Treatment, 35–48. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003165149-3.
Der volle Inhalt der QuelleKamcev, Jovan, und Benny D. Freeman. „Nanofiltration Membranes“. In Encyclopedia of Polymeric Nanomaterials, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_160-1.
Der volle Inhalt der QuelleMadaeni, Sayed S. „Nanofiltration Membranes“. In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_2207-1.
Der volle Inhalt der QuelleKamcev, Jovan, und Benny D. Freeman. „Nanofiltration Membranes“. In Encyclopedia of Polymeric Nanomaterials, 1342–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_160.
Der volle Inhalt der QuelleZong, Zhiyuan, Nick Hankins und Fozia Parveen. „The Application of Nanofiltration for Water Reuse in the Hybrid Nanofiltration-Forward Osmosis Process“. In Nanofiltration for Sustainability, 153–70. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003261827-8.
Der volle Inhalt der QuelleAng, Wei Lun, Abdul Wahab Mohammad, Nor Naimah Rosyadah Ahmad und Yeit Haan Teow. „Role of Nanofiltration Process for Sustainability in Industries“. In Nanofiltration for Sustainability, 1–13. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003261827-1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Nanofiltration"
Zhang, BoWen, Xiaojian Xu, ZengZeng Zhang und Lei Yao. „Prediction and Modeling of Desalination Performance of Nanofiltration Membranes Based on Machine Learning“. In 2024 3rd International Conference on Artificial Intelligence and Computer Information Technology (AICIT), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/aicit62434.2024.10730224.
Der volle Inhalt der QuelleRayssi, Ali Khalfan Al, und Simone Puzzo. „Innovations in Sustainable Oil Production: The Deployment of Nanofiltration Techniques for Water Injection in ADNOC's Onshore Operations“. In SPE Water Lifecycle Management Conference and Exhibition. SPE, 2024. http://dx.doi.org/10.2118/219054-ms.
Der volle Inhalt der QuelleZhang, H., A. Wu, J. Wei und R. Buschjost. „Effect of nanofiltration on photochemical integrity“. In SPIE Advanced Lithography, herausgegeben von Clifford L. Henderson. SPIE, 2008. http://dx.doi.org/10.1117/12.772815.
Der volle Inhalt der QuelleBoukar, Amal Jamal, und Reyad Ramadan Alfarah. „Investigation of Water Treatment Produced by Nanofiltration“. In 2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA). IEEE, 2023. http://dx.doi.org/10.1109/mi-sta57575.2023.10169647.
Der volle Inhalt der QuelleYang, Hu, Yonghong Sun, Weilei Zhong, Tao Wu, Ying Tian und Shichang Li. „Pretreatment of Locomotive Direct Drinking Water by Nanofiltration“. In Third International Conference on Transportation Engineering (ICTE). Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41184(419)537.
Der volle Inhalt der QuelleDavood Abadi Farahani, Mohammad Hossein. „Organic solvent nanofiltration membrane for vegetable oil refining“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/srfh3809.
Der volle Inhalt der QuelleMakertihartha, I. G. B. N., Z. Rizki, M. Zunita und P. T. Dharmawijaya. „Dyes removal from textile wastewater using graphene based nanofiltration“. In INTERNATIONAL SEMINAR ON FUNDAMENTAL AND APPLICATION OF CHEMICAL ENGINEERING 2016 (ISFAChE 2016): Proceedings of the 3rd International Seminar on Fundamental and Application of Chemical Engineering 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4982336.
Der volle Inhalt der QuelleLi, Cunyu, Yun Ma, Hongyang Li und Guoping Peng. „Concentrating phenolic acids from Lonicera japonica by nanofiltration technology“. In 11TH ASIAN CONFERENCE ON CHEMICAL SENSORS: (ACCS2015). Author(s), 2017. http://dx.doi.org/10.1063/1.4977259.
Der volle Inhalt der QuelleVecino, Xanel, María Fernanda Montenegro-Landívar, Andrea Martínez-Arcos, Mònica Reig, José Manuel Cruz, Ana Belén Moldes und José Luis Cortina. „Biosurfactant refinery from corn steep water by nanofiltration processes“. In 15th Mediterranean Congress of Chemical Engineering (MeCCE-15). Grupo Pacífico, 2023. http://dx.doi.org/10.48158/mecce-15.t3-o-32.
Der volle Inhalt der QuelleDavood Abadi Farahani, Mohammad Hossein. „Sustainable Chemical-resistant Nanofiltration Technology for Vegetable Oil Refining“. In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists’ Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.361.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Nanofiltration"
Everett, Randy L., Tom Mayer, Malynda A. Cappelle, William E. ,. Jr Holub, Howard L. ,. Jr Anderson, Susan Jeanne Altman, Frank McDonald und Allan Richard Sattler. Nanofiltration treatment options for thermoelectric power plant water treatment demands. Office of Scientific and Technical Information (OSTI), Juni 2010. http://dx.doi.org/10.2172/1051721.
Der volle Inhalt der QuelleBenny Freeman. Novel Fouling-Reducing Coatings for Ultrafiltration, Nanofiltration, and Reverse Osmosis Membranes. Office of Scientific and Technical Information (OSTI), August 2008. http://dx.doi.org/10.2172/948508.
Der volle Inhalt der QuelleYounes, Saadat, Kim Kyungtae und Foudazi Reza. A lyotropic liquid crystal-templated nanofiltration membrane with thermo- and pH-responsive 3D transport pathway. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2377945.
Der volle Inhalt der QuelleKalman, Joseph, und Maryam Haddad. Wastewater-derived Ammonia for a Green Transportation Fuel. Mineta Transportation Institute, Juli 2022. http://dx.doi.org/10.31979/mti.2021.2041.
Der volle Inhalt der QuelleKalman, Joseph, und Maryam Haddad. Wastewater-derived Ammonia for a Green Transportation Fuel. Mineta Transportation Institute, Juli 2022. http://dx.doi.org/10.31979/mti.2022.2041.
Der volle Inhalt der QuelleFreeman, Benny D., und Joseph M. DeSimone. Very Low Surface Energy (<11 dyn cm-1) Heterophase Polymeric Materials for Membrane Separations: An Integrated Polymer Chemistry/Engineering Approach and The Influence of Backpulsing on Fouling Properties of Novel Nanofiltration Membranes for Wastewater Remediation. Fort Belvoir, VA: Defense Technical Information Center, Juli 1998. http://dx.doi.org/10.21236/ada349382.
Der volle Inhalt der Quelle