Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Nanofibrous materials“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Nanofibrous materials" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Nanofibrous materials"
Zhong, Wen, Malcolm M. Q. Xing und Howard I. Maibach. „Nanofibrous materials for wound care“. Cutaneous and Ocular Toxicology 29, Nr. 3 (02.06.2010): 143–52. http://dx.doi.org/10.3109/15569527.2010.489307.
Der volle Inhalt der QuelleBurger, Christian, Benjamin S. Hsiao und Benjamin Chu. „NANOFIBROUS MATERIALS AND THEIR APPLICATIONS“. Annual Review of Materials Research 36, Nr. 1 (August 2006): 333–68. http://dx.doi.org/10.1146/annurev.matsci.36.011205.123537.
Der volle Inhalt der QuelleGÜLER, BUKET, und FUNDA CENGİZ ÇALLIOĞLU. „Comparative analysis of superabsorbent properties of PVP and PAA nanofibres“. Industria Textila 72, Nr. 04 (01.09.2021): 460–66. http://dx.doi.org/10.35530/it.072.04.1806.
Der volle Inhalt der QuelleUngur, Ganna. „Nanofibrous Filtering Materials With Catalytic Activity“. Advanced Materials Letters 5, Nr. 8 (01.08.2014): 422–28. http://dx.doi.org/10.5185/amlett.2014.amwc1025.
Der volle Inhalt der QuelleDong, Yuping, Yuqi Zheng, Keyan Zhang, Yueming Yao, Lihuan Wang, Xiaoran Li, Jianyong Yu und Bin Ding. „Electrospun Nanofibrous Materials for Wound Healing“. Advanced Fiber Materials 2, Nr. 4 (21.03.2020): 212–27. http://dx.doi.org/10.1007/s42765-020-00034-y.
Der volle Inhalt der QuelleSinha, M. K., B. R. Das, D. Bharathi, N. E. Prasad, B. Kishore, P. Raj und K. Kumar. „Electrospun Nanofibrous Materials for Biomedical Textiles“. Materials Today: Proceedings 21 (2020): 1818–26. http://dx.doi.org/10.1016/j.matpr.2020.01.236.
Der volle Inhalt der QuelleZhou, Shufei, und Wen Zhong. „Adhesion and Binding in Nanofibrous Materials“. Journal of Adhesion Science and Technology 24, Nr. 1 (Januar 2010): 35–44. http://dx.doi.org/10.1163/016942409x12538865055953.
Der volle Inhalt der QuelleZhang, Zhanpeng, und Peter X. Ma. „From Nanofibrous Hollow Microspheres to Nanofibrous Hollow Discs and Nanofibrous Shells“. Macromolecular Rapid Communications 36, Nr. 19 (06.08.2015): 1735–41. http://dx.doi.org/10.1002/marc.201500342.
Der volle Inhalt der QuelleVenugopal, J., Molamma P. Prabhakaran, Yanzhong Zhang, Sharon Low, Aw Tar Choon und S. Ramakrishna. „Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, Nr. 1917 (28.04.2010): 2065–81. http://dx.doi.org/10.1098/rsta.2010.0012.
Der volle Inhalt der QuelleYousefzadeh, Maryam, Masoud Latifi, Mohammad Amani-Tehran, Wee-Eong Teo und Seeram Ramakrishna. „A Note on the 3D Structural Design of Electrospun Nanofibers“. Journal of Engineered Fibers and Fabrics 7, Nr. 2 (Juni 2012): 155892501200700. http://dx.doi.org/10.1177/155892501200700204.
Der volle Inhalt der QuelleDissertationen zum Thema "Nanofibrous materials"
Angelikopoulos, Panagiotis. „Rational design of nanofibrous materials“. Thesis, Heriot-Watt University, 2010. http://hdl.handle.net/10399/2346.
Der volle Inhalt der QuellePalazzetti, Roberto <1984>. „Electrospun nanofibrous interleaves in composite laminate materials“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5245/.
Der volle Inhalt der QuelleWang, Chong, und 王翀. „Electrospun multicomponent and multifunctional nanofibrous tissue engineering scaffolds : fabrication, characteristics and biological performance“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/206645.
Der volle Inhalt der Quellepublished_or_final_version
Mechanical Engineering
Doctoral
Doctor of Philosophy
Liang, Meng. „Spatial organization of electric charges and discharge kinetics of nanofibers elaborated by electrospinning : application to the elaboration of 3D structured nanofibrous materials“. Thesis, Strasbourg, 2020. http://www.theses.fr/2020STRAE002.
Der volle Inhalt der QuelleElectrospinning is a process allowing the production of nanofibrous materials under the action of an intense electrostatic field. During the process, a polymer solution in a semi-diluted entangled regime is fed to a metal needle submitted to a high electrical potential. When the electric field between the needle and a metal counter electrode connected to the electrical ground, called a collector, is strong enough (i.e. about 1 kV/cm), a jet of the solution is violently ejected towards the collector. During the flight between the needle and the collector, the jet is subjected to electro-hydro-dynamic instabilities resulting in whipping movements that promote solvent evaporation and diameter reduction. After a flight time of a few ms, a solid polymer nanofiber in the form of a non-woven membrane is deposited on the collector. When the electrically charged nanofibre is brought into contact with the collector, it gradually discharges. The kinetics of electrical discharge but also the way in which the charges are distributed on the surface of the material during the process determine the organization and the final 3D structuring of the membrane.The work of this thesis consisted in measuring the electrical charges carried by the nanofibre during its deposition but also in studying how these charges dissipate in the membrane and over time once the nanofibre has been deposited. This study was then applied to develop nanofiber membranes with a controlled 3D structure
Tchang, Cervin Nicholas. „Porous Materials from Cellulose Nanofibrils“. Doctoral thesis, KTH, Fiberteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155065.
Der volle Inhalt der QuelleQC 20141103
Butchosa, Robles Núria. „Tailoring Cellulose Nanofibrils for Advanced Materials“. Doctoral thesis, KTH, Biokompositer, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155056.
Der volle Inhalt der QuelleQC 20141103
CARBOMAT
Zadorosny, Lincon [UNESP]. „Produção e caracterização de micro e nanofibras de Poli(fluoreto de vinilideno) - PVDF obtidos pela técnica de fiação por sopro em solução“. Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/91972.
Der volle Inhalt der QuelleNanofibras poliméricas de poli(fluoreto de vinilideno) – PVDF – foram produzidas pela técnica de fiação por sopro em solução (FSS) a partir de soluções de PVDF/N,N, Dimetilformamida – DMF. Foram estudadas as influências da variação da concentração polimérica (15, 20, 25 e 30%, m/v), distância de trabalho (15, 18, 21 e 24 cm), taxa de alimentação (19, 38 e 76 μL/min), e pressão do gás (100, 140 e 180 kPa), sobre a morfologia e diâmetro das nanoestruturas. O diâmetro médio das nanofibras obtidas variou entre 91 e 245 nm. Imagens de MEV apontam que, dentre os parâmetros estudados, o que promoveu maior alteração morfológica das nanofibras foi a concentração polimérica, fator diretamente relacionado à viscosidade da solução. A variação dos demais parâmetros promoveu menores alterações tanto estruturais quanto morfológicas nos filmes nanofibrosos. Análises termogravimétricas (TGA) revelaram que os filmes são termicamente estáveis até uma temperatura de 420 °C. Difratometria de raios X (DRX) indicaram a presença das fases cristalinas α e β, sendo a fase β mais evidenciada para as nanofibras e PVDF casting. O filme obtido por FSS apresentou maior ângulo de contato, demostrando ser mais hidrofóbico. Ensaios de tensão deformação mostraram que os filmes nanofibrosos apresentaram uma deformação até a ruptura de 72%, cerca de 1,7 e 3,1 vezes maior que os obtidos por casting e prensagem a quente, respectivamente. Verificou-se também um decréscimo no módulo de elasticidade e do limite de resistência à tração das nanofibras, comparativamente aos outros filmes
Poly(vinylidene fluoride) – PVDF Nanofibers were produced by solution blow spinning technique (SBS) from solutions PVDF/N,N, Dimethylformamide – DMF. It was investigated the influence of the polymeric concentration (15, 20, 25 e 30% w/v), work distance (15, 18, 21 and 24 cm), feed rate (19, 38 e 76 μL/min), and gas pressure (100, 140 e 180 kPa), on the morphology of the nanostructure and diameter of the nanofibers. The average diameter of the obtained nanostructure was on the range 91 - 245 nm. SEM images show that, among the studied parameters, the concentration of the solution promoted the grater changes in the morphology of the polymer nanofibers. Such factor is directly related to the viscosity of the solution. Variation of the other parameters promoted both structural and morphological changes in the nanofiber films. Termograviometric analyses showed that the films are thermally stable up to 420°C. X-ray diffraction (XRD) indicated the presence of the crystalline phases α and β. However, the β phase is more evident in the nanofibers and in the PVDF casting. The films obtained by SBS showed higher contact angle, which means that they are more hydrophobic. Stress-strain tests showed that nanofiber films had a break deformation of 72%, approximately 1.7 and 3.1 times higher than those obtained by casting and hot pressing, respectively. There was also a decrease in the elastic modulus and in the tensile strength of the PVDF nanofibers when compared with the other films
Zadorosny, Lincon. „Produção e caracterização de micro e nanofibras de Poli(fluoreto de vinilideno) - PVDF obtidos pela técnica de fiação por sopro em solução /“. Ilha Solteira, 2013. http://hdl.handle.net/11449/91972.
Der volle Inhalt der QuelleBanca: Walter Katsumi Sakamoto
Banca: Antonio Riul Júnior
Resumo: Nanofibras poliméricas de poli(fluoreto de vinilideno) - PVDF - foram produzidas pela técnica de fiação por sopro em solução (FSS) a partir de soluções de PVDF/N,N, Dimetilformamida - DMF. Foram estudadas as influências da variação da concentração polimérica (15, 20, 25 e 30%, m/v), distância de trabalho (15, 18, 21 e 24 cm), taxa de alimentação (19, 38 e 76 μL/min), e pressão do gás (100, 140 e 180 kPa), sobre a morfologia e diâmetro das nanoestruturas. O diâmetro médio das nanofibras obtidas variou entre 91 e 245 nm. Imagens de MEV apontam que, dentre os parâmetros estudados, o que promoveu maior alteração morfológica das nanofibras foi a concentração polimérica, fator diretamente relacionado à viscosidade da solução. A variação dos demais parâmetros promoveu menores alterações tanto estruturais quanto morfológicas nos filmes nanofibrosos. Análises termogravimétricas (TGA) revelaram que os filmes são termicamente estáveis até uma temperatura de 420 °C. Difratometria de raios X (DRX) indicaram a presença das fases cristalinas α e β, sendo a fase β mais evidenciada para as nanofibras e PVDF casting. O filme obtido por FSS apresentou maior ângulo de contato, demostrando ser mais hidrofóbico. Ensaios de tensão deformação mostraram que os filmes nanofibrosos apresentaram uma deformação até a ruptura de 72%, cerca de 1,7 e 3,1 vezes maior que os obtidos por casting e prensagem a quente, respectivamente. Verificou-se também um decréscimo no módulo de elasticidade e do limite de resistência à tração das nanofibras, comparativamente aos outros filmes
Abstract: Poly(vinylidene fluoride) - PVDF Nanofibers were produced by solution blow spinning technique (SBS) from solutions PVDF/N,N, Dimethylformamide - DMF. It was investigated the influence of the polymeric concentration (15, 20, 25 e 30% w/v), work distance (15, 18, 21 and 24 cm), feed rate (19, 38 e 76 μL/min), and gas pressure (100, 140 e 180 kPa), on the morphology of the nanostructure and diameter of the nanofibers. The average diameter of the obtained nanostructure was on the range 91 - 245 nm. SEM images show that, among the studied parameters, the concentration of the solution promoted the grater changes in the morphology of the polymer nanofibers. Such factor is directly related to the viscosity of the solution. Variation of the other parameters promoted both structural and morphological changes in the nanofiber films. Termograviometric analyses showed that the films are thermally stable up to 420°C. X-ray diffraction (XRD) indicated the presence of the crystalline phases α and β. However, the β phase is more evident in the nanofibers and in the PVDF casting. The films obtained by SBS showed higher contact angle, which means that they are more hydrophobic. Stress-strain tests showed that nanofiber films had a break deformation of 72%, approximately 1.7 and 3.1 times higher than those obtained by casting and hot pressing, respectively. There was also a decrease in the elastic modulus and in the tensile strength of the PVDF nanofibers when compared with the other films
Mestre
Neves, Roberta Motta. „Produção e caracterização de nanocompósitos expandidos de poliestireno, reforçados com nanofibras e nanowhiskers de celulose obtidas a partir de fibra de curauá“. reponame:Repositório Institucional da UCS, 2017. https://repositorio.ucs.br/handle/11338/3474.
Der volle Inhalt der QuelleSubmitted by cmquadros@ucs.br (cmquadros@ucs.br) on 2018-02-20T11:45:18Z No. of bitstreams: 1 Dissertacao Roberta Motta Neves.pdf: 2419021 bytes, checksum: 98834ba297d6c3752a7400aba41b8968 (MD5)
Made available in DSpace on 2018-02-20T11:45:18Z (GMT). No. of bitstreams: 1 Dissertacao Roberta Motta Neves.pdf: 2419021 bytes, checksum: 98834ba297d6c3752a7400aba41b8968 (MD5) Previous issue date: 2018-02-20
The search for materials of natural origin, with less environmental impact and with the same properties of synthetic materials is increasingly focused on research in the field of engineering. One way to doing this is a development of nanocomposites reinforced with materials obtained from natural fibers, because that have on your biologic structure cellulose and the cellulose is present in greater quantity in the planet. Within the nanocomposites there is a class of expanded nanocomposites that combine good mechanical properties with reduced density and superior capacity of thermal and acoustic insulation when compared to conventional non-expanded nanocomposites. Expanded nanocomposites are materials that have at least three phases: a continuous (polymer matrix), the dispersed phase (reinforcing elements) and the presence of voids inside the structure, called cells. Polystyrene (PS) is a polymer widely used in the production of expanded materials. In this sense, the aim of the present study were firstly to obtain nanofibers (NFC) and nanowhiskers (NWC) of cellulose both extracted from curauá fibers (CF). The NFCs were obtained by the defibrillation process and the NWC from the oxidation method. These were characterized by their transmission electron microscopy (TEM), scanning electron microscopy with field emission (SEM), degree of polymerization (GP), their crystalline structure (XRD), and their thermal properties (TG) and the chemical structure by Fourier-transform infrared spectroscopy (FTIR). After that, the next step was the development of PS/NFC and PS/NWC nanocomposites in the following reinforcement concentrations: 0.25%, 0.50% and 1.00% (w/w). The influence of the incorporation of the reinforcements in the matrix by DMA was evaluated, where an increase in the storage and loss modulus was observed for all the nanocomposites, in relation to the PS without reinforcement. After the nanocomposites were expanded using carbon dioxide in the supercritical state as an expander and the expanded nanocomposites were evaluated by mechanical properties (compressive strength), in the final morphology of the expanded nanocomposite by SEM and by cell size distribution. In the expanded nanocomposites, the incorporation of the NFC promoted an increase in the compressive strength and a decrease in the cell size when compared to the samples reinforced with NWC and pure PS. In general, the incorporation of NWC in nanocomposites prior to expansion provided better results when purchased from NFC-reinforced ones. On the other hand, the incorporation of NFC in the expanded nanocomposites provided better results when compared to those reinforced with NWC.
Li, Shuangwu. „Surface properties of electrospun polymer nanofibres“. Thesis, Queen Mary, University of London, 2010. http://qmro.qmul.ac.uk/xmlui/handle/123456789/548.
Der volle Inhalt der QuelleBücher zum Thema "Nanofibrous materials"
Guceri, Selcuk, Yuri G. Gogotsi und Vladimir Kuznetsov, Hrsg. Nanoengineered Nanofibrous Materials. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2550-1.
Der volle Inhalt der QuelleWang, Ce, und Yanbo Liu. Advanced Nanofibrous Materials Manufacture Technology Based on Electrospinning. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenWang, Ce, und Yanbo Liu. Advanced Nanofibrous Materials Manufacture Technology Based on Electrospinning. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenWang, Ce, und Yanbo Liu. Advanced Nanofibrous Materials Manufacture Technology Based on Electrospinning. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenWang, Ce, und Yanbo Liu. Advanced Nanofibrous Materials Manufacture Technology Based on Electrospinning. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenAdvanced Nanofibrous Materials Manufacture Technology Based on Electrospinning. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle finden(Adapter), Jennifer Wright, Selcuk Guceri (Editor), Yury G. Gogotsi (Editor) und Vladimir Kuznetsov (Editor), Hrsg. Nanoengineered Nanofibrous Materials (NATO Science Series II: Mathematics, Physics and Chemistry). Springer, 2004.
Den vollen Inhalt der Quelle finden(Adapter), Jennifer Wright, Selcuk Guceri (Editor), Yury G. Gogotsi (Editor) und Vladimir Kuznetsov (Editor), Hrsg. Nanoengineered Nanofibrous Materials (Nato Science Series II: Mathematics, Physics and Chemistry). Springer, 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Nanofibrous materials"
Yoda, Minami, Jean-Luc Garden, Olivier Bourgeois, Aeraj Haque, Aloke Kumar, Hans Deyhle, Simone Hieber et al. „Nanofibrous Materials and Composites“. In Encyclopedia of Nanotechnology, 1543. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100498.
Der volle Inhalt der QuelleWang, Wei, Zhigao Zhu, Qiao Wang und Ruisha Shi. „Functionalization of Electrospun Nanofibrous Materials“. In Advanced Nanofibrous Materials Manufacture Technology Based on Electrospinning, 243–82. Boca Raton, FL : Taylor & Francis Group, LLC, CRC Press is an imprint of Taylor & Francis Group, an Informa Business, [2018]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429085765-8.
Der volle Inhalt der QuellePalit, Sukanchan. „Carbon Nanotubes and its Applications in Diverse Areas of Science and Engineering: A Critical Overview“. In Engineered Carbon Nanotubes and Nanofibrous Materials, 1–27. Toronto ; New Jersey : Apple Academic Press, 2019. | Series: AAP research notes on nanoscience and nanotechnology: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781351048125-1.
Der volle Inhalt der QuellePalit, Sukanchan. „Engineered Nanomaterials, Nanomaterials, and Carbon Nanotubes: A Vision for the Future“. In Engineered Carbon Nanotubes and Nanofibrous Materials, 29–53. Toronto ; New Jersey : Apple Academic Press, 2019. | Series: AAP research notes on nanoscience and nanotechnology: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781351048125-2.
Der volle Inhalt der QuelleAbraham, Jiji, Kalarikkal Nandakumar, C. George Soney und Thomas Sabu. „Surface Characteristics of Ionic Liquid-Modified Multiwalled Carbon Nanotube-Based Styrene-Butadiene Rubber Nanocomposites: Contact Angle Studies“. In Engineered Carbon Nanotubes and Nanofibrous Materials, 55–71. Toronto ; New Jersey : Apple Academic Press, 2019. | Series: AAP research notes on nanoscience and nanotechnology: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781351048125-3.
Der volle Inhalt der QuelleEsmaeili, M., R. Ansari und A. K. Haghi. „Progress on Carbon Nanotube Pull-Out Simulation With Particular Application on Polymer Matrix Via Finite Element Model Method“. In Engineered Carbon Nanotubes and Nanofibrous Materials, 73–99. Toronto ; New Jersey : Apple Academic Press, 2019. | Series: AAP research notes on nanoscience and nanotechnology: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781351048125-4.
Der volle Inhalt der QuellePalit, Sukanchan. „Environmental Engineering Applications of Carbon Nanotubes: A Critical Overview and a Vision for the Future“. In Engineered Carbon Nanotubes and Nanofibrous Materials, 101–26. Toronto ; New Jersey : Apple Academic Press, 2019. | Series: AAP research notes on nanoscience and nanotechnology: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781351048125-5.
Der volle Inhalt der QuelleIqbal, Sajid, Rangnath Ravi, Anujit Ghosal, Jaydeep Bhattacharya und Sharif Ahmad. „Advances in Carbon Nanotube-Based Conducting Polymer Composites“. In Engineered Carbon Nanotubes and Nanofibrous Materials, 127–41. Toronto ; New Jersey : Apple Academic Press, 2019. | Series: AAP research notes on nanoscience and nanotechnology: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781351048125-6.
Der volle Inhalt der QuelleRavi, Rangnath, Sajid Iqbal, Ghosal Anujit und Ahmad Sharif. „Carbon Nanotubes-Based Adsorbent: An Efficient Water Purification Technology“. In Engineered Carbon Nanotubes and Nanofibrous Materials, 143–66. Toronto ; New Jersey : Apple Academic Press, 2019. | Series: AAP research notes on nanoscience and nanotechnology: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781351048125-7.
Der volle Inhalt der QuelleZafar, Fahmina, Eram Sharmin, Hina Zafar und Nahid Nishat. „Polylactic Acid/Carbon Nanotubes-Based Nanocomposites for Biomedical Applications“. In Engineered Carbon Nanotubes and Nanofibrous Materials, 167–86. Toronto ; New Jersey : Apple Academic Press, 2019. | Series: AAP research notes on nanoscience and nanotechnology: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781351048125-8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Nanofibrous materials"
Lyubun, German P., und Nadezda O. Bessudnova. „A comparative evaluation of mechanical properties of nanofibrous materials“. In Saratov Fall Meeting 2013, herausgegeben von Elina A. Genina, Vladimir L. Derbov, Igor Meglinski und Valery V. Tuchin. SPIE, 2014. http://dx.doi.org/10.1117/12.2051930.
Der volle Inhalt der QuellePatel, Khyati K., Ashish N. Aphale, Isaac G. Macwan, Miad Faezipour und Prabir K. Patra. „Polycaprolactone nanofibrous materials as an efficient dry eye test strip“. In 2014 Health Innovations and POCT. IEEE, 2014. http://dx.doi.org/10.1109/hic.2014.7038885.
Der volle Inhalt der QuelleFridrichová, L., M. Frydrych, M. Herclík, R. Knížek und K. Mayerová. „Nanofibrous membrane as a moisture barrier“. In THE 3RD JOINT INTERNATIONAL CONFERENCE ON ENERGY ENGINEERING AND SMART MATERIALS (ICEESM-2018) AND INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY AND NANOMATERIALS IN ENERGY (ICNNE-2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5051103.
Der volle Inhalt der QuelleSahoo, Bibhuti Bhusan, Ipsita Priyadarshini und Bibekananda Sundaray. „Study of mechanical properties of electrospun polyacrylonitrile nanofibrous membrane“. In NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0061272.
Der volle Inhalt der QuelleOnyilagha, Obiora U., Yichun Ding und Zhengtao Zhu. „Freestanding electrospun nanofibrous materials embedded in elastomers for stretchable strain sensors“. In Micro- and Nanotechnology Sensors, Systems, and Applications XI, herausgegeben von M. Saif Islam und Thomas George. SPIE, 2019. http://dx.doi.org/10.1117/12.2517160.
Der volle Inhalt der QuelleLiangxi Li, Jonathan E. Cook, Zhongyang Cheng und Xinyu Zhang. „PVDF/PPy nanofibrous membranes for peripheral nerve lesion treatments“. In 2017 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF)/International Workshop on Acoustic Transduction Materials and Devices (IWATMD)/Piezoresponse Force Microscopy (PFM). IEEE, 2017. http://dx.doi.org/10.1109/isaf.2017.8000209.
Der volle Inhalt der QuelleBalashov, V., E. Chepeleva, V. Tsvelaya, M. Slotvitsky, S. Pavlova, A. Ponomarenko, A. Dokuchaeva et al. „Use of polylactic nanofibrous scaffolds as a substrate for cardiomyocytes cultivation“. In PROCEEDINGS OF THE ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. Author(s), 2018. http://dx.doi.org/10.1063/1.5083267.
Der volle Inhalt der QuelleWei, Ning, Ran Xu und Rongzhi Tang. „Immobilization of Horseradish Peroxidase on Modified Electrospun Nanofibrous Membrane for 2,4-Dichlorophenol Removal“. In The Second International Conference on Materials Chemistry and Environmental Protection. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0008188902830292.
Der volle Inhalt der QuelleTyurin, Alexander I., Vyacheslav V. Rodaev, Vladimir M. Vasyukov und Tatiana S. Pirozhkova. „Development of new nanofibrous ceramics based on zirconium dioxide for catalytic application“. In PROCEEDINGS OF THE ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. Author(s), 2018. http://dx.doi.org/10.1063/1.5083556.
Der volle Inhalt der QuelleKouhi, Monireh, Mohammadhossein Fathi, Jayarama Reddy Venugopal, Morteza Shamanian und Seeram Ramakrishna. „Preparation and characterization of biohybrid poly (3-hydroxybutyrate-co-3-hydroxyvalerate) based nanofibrous scaffolds“. In 6TH INTERNATIONAL BIENNIAL CONFERENCE ON ULTRAFINE GRAINED AND NANOSTRUCTURED MATERIALS: (UFGNSM2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5018946.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Nanofibrous materials"
Zhigilei, Leonid V. Scaling Laws and Mesoscopic Modeling of Heat Transfer in Nanofibrous Materials and Composites. Fort Belvoir, VA: Defense Technical Information Center, November 2013. http://dx.doi.org/10.21236/ada595916.
Der volle Inhalt der Quelle