Dissertationen zum Thema „Nanoantenne plasmonique“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-23 Dissertationen für die Forschung zum Thema "Nanoantenne plasmonique" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Esparza, Villa Juan Uriel. „Fabrication et caractérisation d'antennes patch plasmoniques“. Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS088.
Der volle Inhalt der QuelleIn this thesis, we exploit light-matter interaction between a single semiconductor CdSe/CdS nanocrystal and a plasmonic patch antenna. This work can be divided in two main parts. We have first characterized the photoluminescence dynamics and spectroscopic signatures of single nanocrystals at different excitation powers. High quality CdSe/CdS nanocrystals are single-photon sources at room temperature. Nevertheless, multiexcitonic emission occurs when two or more excitons are recombining radiatively. We have developed an analytical model which describes the number of photons emitted by a nanocrystal as a function of the mean number of excitons created in one excitation pulse. With this model, we can calculate the quantum efficiency of the bi-exciton recombination. The second part is devoted to the development and optimization of an optical lithography protocol for patch antennas. We have stablished a protocol that allows us to couple a thin Au nano-disk above a single nanocrystal in a deterministic way. We have first fabricated passive nanoantennas in order to study reflectivity spectroscopic properties in the plasmonic structure. Later on, we have fabricated several active patch nanoantennas coupled with single CdSe/CdS nanocrystals. We have demonstrated the acceleration of spontaneous emission thanks to the coupling with the plasmons nanodisk. For some antennas, we have evidenced a super-poissonian emission signature when a post-processing temporal filter is applied. Finally, we have evidenced the emission of light partially coherent of one antenna in the proximity of the metallic square edge
Dileseigres, Angeline. „Diarylethenes used as molecular switches for the connection of gold nanoparticles“. Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS014.
Der volle Inhalt der QuelleDiarylethene molecules used as molecular switches are envisioned as components of molecular electronic devices. These photochromic molecules exhibit high thermal stability, resistance to fatigue, and switching efficiency. Nevertheless, the switching of most diarylethenes (DAEs) is asymmetric: their photocycloreversion reaction possessing a much lower quantum yield than that of their photocyclization reaction. A strategy to solve that asymmetric switching issue was tested, it consisted in connecting the diarylethene molecules to gold nanoparticles (AuNPs). Indeed, gold nanoparticles exhibit both a localized surface plasmon resonance (LSPR), very useful for the monitoring of the adsorption of the DAEs at the surface of the AuNPs, and a plasmonic nanoantenna effect. This nanoantenna effect, generating a large enhancement of the electromagnetic field in the close vicinity of the nanoparticle, was expected to increase the efficiency of the photocycloreversion reaction (its quantum yield), leading to a more symmetric switching. The switching of the dithienylethene (DTE) molecules was first characterized for the molecules alone in solution. Then, the functionalization of 28 nm gold nanoparticles deposited on ITO by the DTE molecules was monitored in situ by UV-visible spectroscopy. Switching measurement on the samples ITO/AuNPs/DTE were performed by UV-visible spectroscopy combined with an irradiation set-up. It resulted that for the diarylethene molecules chosen for this study connected to 28 nm AuNPs, although the switching capacity was preserved upon grafting on the AuNPs, the quenching was largely dominant. As a consequence, a slowing of the photo-induced reactions was caused and not an acceleration. Gold nanoparticles were also studied at the unique nanoparticle scale by AFM and hypermicroscopy (dark field microscopy coupled to UV-visible spectroscopy). On the one hand, the functionalization of individual 51 nm gold nanoparticles was monitored by hypermicroscopy. Switching measurements were then conducted on the diarylethenes molecules beard by single AuNPs, revealing that this switching was comparable to the one previously measured on a more global scale. On the other hand, asymmetric plasmonic dimers made of a 51 nm AuNP and a 28 nm AuNP were prepared and characterized
Bigourdan, Florian. „Nanoantennes plasmoniques“. Thesis, Palaiseau, Institut d'optique théorique et appliquée, 2014. http://www.theses.fr/2014IOTA0020/document.
Der volle Inhalt der QuelleThe work of this thesis has been devoted to a few applications of antenna concepts for the manipulation of light. In the optical range, surface modes called surface plasmon polaritons take place in the vicinity of metallic antennas, enabling a strong light/matter interaction within highly confined volumes. In order to take advantage of this property, three applications of plasmonic antennas will be investigated. First, in the case of single-photon sources, both theoretical and experimental studies of single-emitters performance when coupled to a planar metallic antenna will be presented. A strategy to enhance its performance will be studied theoretically. Then, in the case of electrical generation of light by inelastic electron tunneling, we will analyse the modification of radiation properties close to a metallic nano-rod. This analysis paves the way towards the design of integrated, compact electrical sources of surface plasmons. Finally, in the case of detecting a weak quantity of molecules, the interaction between an infrared light beam and a sub-nanometric layer of resonant molecules deposited on a nanostructured metallic mirror will be studied
Cui, Lingfei. „Antennes photoniques pour amplifier les interactions entre la lumière et la matière chirale“. Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS392.
Der volle Inhalt der QuelleThe detection of molecules based on fluorescence or Raman scattering has been widely studied and is currently used in industry and laboratories. However, many organic molecules of interest are chiral, and their chemical and biological properties depend on their enantiomer as well as on the chirality of their secondary structure. The quantity and chirality of biomolecules are classically determined by measuring the differential absorption between the two opposite circular polarizations (chiroptic method). However, this method is limited by the low differential absorption of chiral molecules, which is of the order of 10-3 in the UV part of the spectrum. Plasmonic resonators have the ability to resonantly interact with light and are characterized by a moderate quality factor and a low effective volume. This resonant interaction allows (i) to increase the coupling between molecules and light and (ii) to control the polarization properties of light. So far, the latest advances concern the implementation of nanostructured chiral surfaces with gammadion-type resonators or stacked twisted resonators that interact preferentially with a given helicity of light. However, the mechanism behind the differential response of biomolecules coupled to chiral resonators to circularly polarized light is still unclear, preventing the optimization of such detection. Moreover, in the research published so far, two different chiral sensors are needed to interact with right- and left-handed circularly polarized light, which requires complex calibration procedures. During the course of my PhD, I have studied the use of anisotropic achiral nanostructures to interact with chiral molecules. Indeed, they have the significant advantage over chiral nanostructures of changing the sign of the circular dichroism by controlling the incident polarization or the direction of propagation. Indeed, the symmetries of the electromagnetic field in close proximity to the resonators can be manipulated at will by changing illumination conditions hence providing a unique tool for studying the origin of the electromagnetic coupling between chiral biomolecule and nanoresonators. Consequently, in my PhD project I propose to use plasmonic nanoresonators to increase the light - “chiral matter” interactions in order to detect and study chiral molecules. I will use the concept of achiral plasmonic nanostructures (nanoslits) to develop innovative nanoresonators that will be used, once functionalized, to detect chiral biomolecules with enantiomer sensitivity. Indeed, achiral resonators can generate both signs of chiral fields as opposed to chiral resonators which would make their use very flexible. This work implies characterizing, describing and understanding the origins of chiral fields and how to make them homogeneous. Through the study of nanoslits, I demonstrate numerically and theoretically how to design a nanosource of pure superchiral light, free of any background and for which the sign of the chirality is tunable on-demand in wavelength and polarization. In the perspective, I will present experimental methods that could monitor the CD via fluorescence emission (FDCD for Fluorescence Detected Circular Dichroism) in the case of light harvesting molecules for molecules that need to be excited in the UV, autofluorescence may be used in conjunction with aluminum resonators. Without loss of generality, these considerations lead to the decision of investigating plasmonic resonators with resonance at 680 nm which correspond to the chiral absorption band of LHCII. The idea of blocking the excitation beam to collect only the emission of the chiral molecules leaded to the idea of investigating the resonances of openings in an opaque layer of gold
Yang, Xingyu. „Manipulating the inverse Faraday effect at the nanoscale“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS219.
Der volle Inhalt der QuelleLight-induced magnetism describes the effect where a material is magnetized by an optical pulse. In transparent materials, optically-induced magnetization can be realized directly by circularly polarized light. Sometimes, in metallic materials, this type of magnetization also exists due to the microscopic solenoidal path of electrons driven by circularly polarized light. In some cases, the light creates macroscopic circulating DC drift currents, which also induce DC magnetization in metal. In a broad sense, these light-induced magnetisms are known as the inverse Faraday effect.In the PhD project, I studied light-induced drift currents in multiple gold nanoantennas. We realized plasmonically enhanced stationary magnetic fields through these drift currents. The study is based on the Finite-Difference Time-Domain (FDTD) method and the corresponding light-induced magnetism theories. In different research topics, we have realized: 1) an ultrafast, confined, and strong stationary magnetic field in a bull-eye nanoantenna. 2) A stationary magnetic field through linear polarization in a nanorod. 3) A Neel-type skyrmion constructed by a stationary magnetic field in a nanoring. In these studies, we examined the optical properties of different nanoantennas and explained the physical origin of light-induced drift currents and stationary magnetic fields. We demonstrated the method to achieve plasmonically enhanced inverse Faraday effects and explored the possibility of realizing magnetization through linearly polarized incident light. Finally, we extended the inverse Faraday effect to more physical research areas, such as constructing skyrmions by stationary magnetic fields through the inverse Faraday effect.The magnetic effect of light remains a rich area of research. My studies might find applications in many areas, including magneto-optical materials and devices, optical data storage, biomedical applications, spintronics, quantum computing, fundamental research in electromagnetism, and advanced materials research
Al-Aridhee, Tahseen. „Numerical study of optical properties of single and periodic nanostructures : from nanoantennas to enhanced transmission metamaterials“. Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2004/document.
Der volle Inhalt der QuelleThe release of the rst report by Faraday in 1857 set the foundation of the production of metal nanoparticlesand their unexpected optical properties (coloring). More recently, controlling and guiding light via plasmonicresonance in nanostructures enable a lot of applications affecting everyday life that involves light. Plasmonresonance of metallic structures is a key phenomenon that allows unique optical properties through the interactionof light with the free electrons of the metal. The excitation of Localized Surface Plasmon Resonance(LSPR) leads to turn-on large local enhancements of electromagnetic energy as within antennas or to routelight as waveguide to desired region with high transmission through the excitation of Propagating SurfacePlasmon (PSP). During this thesis, we have developed an existing algorithm in order to calculate the opticalresponse of NPs of any shape. We have especially determined the localized energy enhancement factor interm of optical response of nano-antenna. This anisotropic (polarization dependent) NPs type can feature, atplasmon resonance, scattering efciency factor higher than 25. Moreover, an important systematic study hasbeen performed in order to optimize design of such NPs.Concerning the PSP that are involved in the enhanced transmission through Annular Aperture Arrays (AAAs),we systematically study the properties of the excitation of the peculiar Transverse ElectroMagnetic (TEM) guidedmode inside such nano-apertures. A complete numerical study is performed to correctly design the structurebefore it is experimentally characterized. For reasons associated to fabrication constraints and efciency,a slanted AAA made in perfectly conducting metal is proposed and studied. We numerically and analyticallydemonstrate some intrinsic properties of the structure showing a transmission coefcient of at least 50%ofan un-polarized incident beam independently of the illumination configuration (polarization, angle, and planeof incidence). At the TEM peak transmission, the laminar flow of the energy through the structure can exhibitgiant deviation over very small distances ( ). The results presented in this thesis could be considered as animportant contribution to the understanding of the enhanced transmission phenomenon based on the excitationof guided modes
Rolly, Brice. „Subwavelength photonic resonators for enhancing light-matter interactions“. Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4366.
Der volle Inhalt der QuelleOptical antennas are structures able to convert, in both ways, electromagnetic energy between a light beam and a source (or absorber) placed in the structure. The use of sub-wavelength resonators enables one to realize this function in an efficient way, on relatively broad bandwidths, and to have a compact design. A good understanding of the optical properties of such resonators, taken individually, and of their couplings, is thus necessary in order to propose efficient optical antenna designs. In this manuscript, using a multipole decomposition of the fields and a T-matrix method, we obtain rigorous analytical solutions for spherical, homogeneous resonators, from which we deduce simplified, intuitive models that are still very close to the exact resolution of the Maxwell equations.Among other results, those models enabled us to propose a nanoantenna design that is at once compact, radiative and efficient, by using a hybrid metallo-dielectric structure. Some collaborations with experimental groups enabled us to validate, on the one hand, the optical characteristics of hybrid chromophores that are self-assembled using a DNA template (S. Bidault, Paris), and on the other hand, the possibility of using multiple combined electric and magnetic resonances (supported by dielectric spheres of moderate refractive index, n=2.45) in order to reflect, or more importantly collect, radiation coming from an electric dipole emitter placed nearby (the experiment was realized in the microwave regime by R. Abdeddaim and J-M. Geffrin)
Habert, Benjamin. „Contrôle de la fluorescence par des nanoantennes plasmoniques“. Phd thesis, Palaiseau, Institut d'optique théorique et appliquée, 2014. http://pastel.archives-ouvertes.fr/pastel-01023199.
Der volle Inhalt der QuelleDuperron, Matthieu. „Conception et caractérisation de nanoantennes plasmoniques pour la photodétection infrarouge refroidie“. Thesis, Troyes, 2013. http://www.theses.fr/2013TROY0030/document.
Der volle Inhalt der QuelleThe market for cooled infrared imaging technologies is growing fast due to a range of applications covering military, commercial and space. Current research for innovative systems focuses on high operating temperature and multispectral detectors.To achieve these aims, optical resonators can be used to concentrate electromagnetic fields in thin absorbing media. This thesis investigates the possibility of using plasmonic resonators for HgCdTe photodetection.Temporal coupled-mode theory is used to optimise analytically the absorption in a plasmonic resonator incorporating an absorbing semiconductor subject to the critical coupling condition. A design of a thin plasmonic HgCdTe diode is then described. This includes a hybrid plasmonic mode arising from the coupling between a surface plasmon and a cavity gap-plasmon mode
Torres, Garcia Juan de. „Nanophotonic control of Förster resonance energy transfer“. Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4354.
Der volle Inhalt der QuelleThe technique of Förster resonance energy transfer (FRET) determines the separation between two molecules at the nanometer scale, where molecular interactions can take place. The phenomenon requires a donor fluorophore transferring its energy in a non-radiative way, through a near-field dipole-dipole interaction, to an acceptor. Nanophotonics achieves accurate control over these interactions by modifying the local density of optical states (LDOS) of a single quantum emitter. We have clearly demonstrated enhanced energy transfer within single FRET pairs confined in single nanoapertures made of gold and also aluminum or in more complex structures like the antenna-in-box design. In particular, we have revealed the strong influence of the mutual dipole orientation on the FRET enhancement using nanostructures. Also, by means of silver nanowires, we have demonstrated a long-range plasmon-mediated fluorescence energy transfer between two nanoparticles separated by micrometer distance. Our results are clearing a new path to improve the energy transfer process widely used in life sciences and biotechnology. Optical nanostructures open up many potential applications for biosensors, light sources or photovoltaics
Paparone, Julien. „Contrôle de l’émission dans des nanostructures plasmoniques : nanoantennes multimères et plasmons long-range“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1178/document.
Der volle Inhalt der QuelleThe object of this thesis is the coupling between luminescent nanocristals and metallic nanostructures. These structures show numerous interest in a large variety of applications thanks to the apparition of electromagnetic surface wave known as plasmons whose properties are tailored with the geometry of these structures. In this thesis, two types of geometry will be adressed : the long-range plasmons, and plasmonic nanoantennas. In a first time, the study focuses on a geometry in which two propagative surface plasmons are coupled through a thin metal film; creating a new type of plasmons with extended propagation lenghts. By coupling the emission of nanocristals in such a geometry, the energy repartition in the different desexcitation channels available has been adressed. The viccinity of the metal has also proved to increase the spontaneous decay rate up to 1.7. The non trivial contribution of conventional waveguide modes has also been demonstrated. In a second time, the potential of using metallic nanoparticles in a pillar geometry as nanoantennas to enhance and redirect the spontaneous emission has been investigated. The structure is composed of a metallic dimer creating a hotspot on top of which another metallic nanoparticles has been placed. FDTD simulations has shown that this kind of geometry can lead to few loss (<10%), a strong enhancement of the emission rate (>x80), a redirection of the emission and paves the way to wavelenght multiplexing possibilities. Besides, these structures present the advantage to be compatible with modern thin film elaboration techniques. Preliminary realisations have then been introduced
Suck, Sarah. „Holographie hétérodyne numérique pour l'étude des nanostructures plasmoniques“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00659821.
Der volle Inhalt der QuelleGuillot, Nicolas. „Propriétés optiques de nanoparticules métalliques et application aux nanocapteurs par exaltation de surface“. Phd thesis, Université Paris-Nord - Paris XIII, 2012. http://tel.archives-ouvertes.fr/tel-00844312.
Der volle Inhalt der QuelleGuillot, Nicolas. „Propriétés optiques de nanoparticules métalliques et application aux nanocapteurs par exaltation de surface“. Phd thesis, Paris 13, 2012. http://www.theses.fr/2012PA132048.
Der volle Inhalt der QuelleThe work presented in this manuscript focuses on the different possibilities leading to the optimization of the signal of localized surface plasmon resonance (LSPR) basednanosensors and fabricated by some techniques enabling a precise control of the geometry of metallic nanostructures. Nanosensors based on LSPR and surface enhanced Raman scattering (SERS) have been especially studied. The first part of this manuscript reminds the key parameters leading to the optimization of the signal of such nanosensors, i. E. , the nanostructures material, the size and the shape of the nanostructures, the surrounding medium, the incident electric field polarization, the gap between the nanoparticles and the higher order LSPR. The second part is focused on SERS nanosensors by exposing the optimization principle and possibilities of the signal in the case of arrays of gold nanoparticles. Finally, the last part is devoted to the observation of the shape of the local electromagnetic field around the nanoparticles (amplitude and decay length) by the study of the near-field coupling between gold nanoparticles of different shapes
Reynaud, Clément. „Nanoantennes rectifiantes pour la conversion de lumière en électricité“. Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0225.
Der volle Inhalt der QuelleSince Einstein's and De Broglie's works in the early XXth century, the double nature of light being a set of particles as well as a wave is admitted in the scientific community. Today, both solar energy production and light detection are based on the photovoltaic effect which relies on the corpuscular description of light. To investigate a new way to produce electricity out of light, the concept of rectifying antenna is derived from the wave description. As an electromagnetic wave, light can be haversted by an antenna just like a radiowave. Although the first theoretical descriptions of this phenomena go back to the late sixties, it has just been a decade since a few experimental demonstrations of rectifying antennas designed for visible and infrared light have been published. This is explained by the recent progresses of the nanofabrication processes. This thesis aim to propose an innovative design of rectifiying nanoantennas able to address the two main challenges which are: the fabrication of reproducible nanoantennas at the nanoscale; and the rectification of the alternative current which arises when light is absorbed in the nanoantennas
Jeannin, Mathieu Emmanuel. „Control of the emission properties of semiconducting nanowire quantum dots using plasmonic nanoantennas“. Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY053/document.
Der volle Inhalt der QuelleIn this work, we study the coupling between plasmonic nanoantennas and semiconducting nanowire quantum dots (NWQDs). This coupling requires spectral, spatial and polarisation matching of the antenna mode and of the NWQD emission. Hence, a full characterisation of both the antenna system and the NWQDs has to be performed to determine a relevant coupling geometry.Using cathodoluminescence (CL) we investigate the relation between the CL signal of circular patch plasmonic antennas and the electromagnetic local density of states (LDOS). The successive resonances supported by these antennas are complex superimpositions of Bessel modes of different radial and azimuthal order. Applying an analytical LDOS model, we show that we can fabricate and characterise antennas down to single mode resonances. However, the antennas CL spectrum goes beyond the radiative part of the LDOS. By changing the spacing layer thickness and the antennas materials, we propose an explanation for the origin of the additional CL signal we observe that is not related to the radiative LDOS of the patch antennas. We also demonstrate the fabrication of Al patch antennas working in the blue spectral range and apply our method to other geometries.We perform optical characterisation of different quantum dots (QDs) embedded inside semiconducting nanowires (NWs) made of II-VI materials. We use microphotoluminescence (µPL) to study the emission of single NWQDs. Time-resolved measurements and Fourier imaging allows us to extract their exciton lifetime and radiation patterns. The variability in the emission properties of the NWQDs due to inhomogeneity in the growth process are evidenced by studying a statistical set of nanowires. A complete model based on polarisation-resolved Fourier imaging and magneto-optical spectroscopy is detailed, allowing to fully determine the QD electronic and optical properties for an individual system.Finally, we develop a cathodoluminescence-based two-step electron-beam lithography technique to deterministically fabricate plasmonic antennas coupled to NWQDs, enhancing their µPL properties. The coupling results in an enhanced absorption of the pump laser inside the NW and in an increase of the radiative rate of the QD, leading to up to a two-fold intensity enhancement factor for the coupled system
Mou, Ye. „Manipuler l'effet Faraday inverse par l'utilisation de nanostructures plasmoniques inversement conçues“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS102.
Der volle Inhalt der QuelleThe inverse Faraday effect is a magneto-optical process allowing for the magnetization of matter through optical excitation carrying a non-zero spin of light. This light-matter interaction in metals at the nanoscale arises from the generation of drift currents via the nonlinear forces applied by light to the conduction electrons. Particularly, this phenomenon has been conventionally considered symmetrical; right or left circular polarizations generate magnetic fields oriented either in the direction of light propagation or in the direction opposite to propagation. We demonstrate here that by locally manipulating the spin density of light in inversely designed plasmonic nano-antennas, the inverse Faraday effect can be chiral and generate strong stationary magnetic fields due to drift currents only for one helicity of incoming light; furthermore, we demonstrate that this magneto-optical process can have its symmetry reversed, which was considered impossible; and it can even generate unidirectional drift photocurrents as a tunable nano-source for linear THz radiation. This novel optical concept of manipulating the inverse Faraday effect by plasmonic nano-antennas finds diverse applications in ultrafast control of magnetic domains, not only in ultrafast data storage technologies but also in research areas such as nanoscale THz spectroscopy, magnetic trapping, magnetic skyrmions, magnetic circular dichroism, magnetic material manipulation, spin control, spin precession, spin currents, and spin waves, among others
Soun, Léna. „Exaltation d’effets non linéaires dans des métasurfaces à multi-résonances accordées“. Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX066.
Der volle Inhalt der QuelleNano-antennas are nanostructured componentscapable of concentrating light in subwavelengthvolumes, exalting the electric field by severalorders of magnitude. This is particularly interestingfor the generation of nonlinear effects, which dependon the powers of the incident electric field. Actually,the second order non-linear effects, which allowfrequency conversion phenomena, such as secondharmonic generation (SHG), or difference frequencygeneration (DFG), depend on the square of the electricfield. Thus, if we include a nonlinear crystal in anano-antenna, we can significantly enhance these effects.The objective of this thesis is thus to designnano-antennas that can efficiently generate secondorder nonlinear effects. Such devices could be appliedto the creation of new sources for infrared spectroscopy.The thesis work ranges from electromagnetic modellingof nonlinear effects in nanostructures to experimentaldemonstration. The modelling of nonlinear polarizationgenerated along the optical axis has beendeveloped using a B-Spline modal method for linearcalculations. This model has allowed to simulate thenonlinear effects related to this polarization, to refinethe understanding of physical phenomena in multiresonantnanostructures, and to optimize a structurewith an efficiency of 0.1W/W² in difference frequencygeneration in the infrared. The design of a sample allowedthe validation of the resonant properties, as wellas an experimental demonstration of second harmonicgeneration
Zhang, Cheng. „Electrical excitation of surface plasmon polaritons by inelastic tunneling electrons with resonant nanoantennas“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLO007/document.
Der volle Inhalt der QuelleSurface plasmon polaritons (SPPs) plays a central role in nanophotonics because they are optical modes that can be confined in space at the 10 nm scale and in time at the 10 fs scale. Electrical excitation of surface plasmon polaritons by inelastic tunneling electrons has the potential to be fast and localized so that it offers the opportunity to develop a nanosource for on-chip nanophotonics taking advantage of the full potential of surface plasmons polaritons. However, inelastic tunneling is rather inefficient with a typical electron-to-plasmon conversion efficiency of 10-7~10-5. In this thesis manuscript, we present a study for enhancing surface plasmon emission by inelastic tunneling electrons with a resonant nanoantenna. It consists of theoretical and experimental investigations. First, we have developed a theoretical model to describe the light emission from a tunnel junction based on the fluctuation-dissipation theorem. Second, we have theoretically demonstrated two strategies to improve the antenna SPP efficiency thus aiming to enhance electron-to-plasmon conversion efficiency. We introduce a resonant antenna mode with a sub-nanometer gap in order to enhance the coupling between the inelastic current and the the mode. Furthermore, we introduce the hybridization in a nanopatch antenna between a gap mode and an antenna mode to launch SPPs: we theoretically predict that 30% of the power emitted by a dipole is converted into SPP (working wavelength at 800nm) with a 1nm gap thickness. Third, we have developed the fabrication procedures to realize antenna tunnel junctions based on the Al/AlOx/Au configuration. The fabricated antenna junction shows a robust functionality both regarding electrical and optical properties. The antenna junction is demonstrated to control the SPP emission spectrum, the SPP emission polarization and enhance the SPP emission efficiency by over 3 orders of magnitude. The total SPP power emitted is in the range of 10 pW, four orders of magnitude larger than the typical fW power emitted by a scanning tunneling tip junction
Li, Claire. „Étude des propriétés de champ proche et de champ lointain des nano-antennes infrarouges“. Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLET044.
Der volle Inhalt der QuelleNanoantennas have the ability to manipulate light both spatially and spectrally at the nanoscale. They can be arranged in arrays by the periodization of a pattern in order to construct tunable metasurfaces with spatially homogeneous properties. A promising application is the use of nanoantennas as thermal emitters for the design of infrared sources that bypass the limitations of conventional ones. Nevertheless, ensemble measurements give rise to collective effects such as inter-antenna coupling that are liable to impair the global optical response compared to that of the unit cell. The objective of this thesis is to develop highly-sensitive experimental methods that can resolve the intrinsic optical response of a subwavelength structure so that resonant processes at the single nano-antenna scale are better understood.The study hinges on two main research axes, one dedicated to a near-field technique using a thermal radiation scanning tunneling microscope for super-resolved imaging, the other pertaining to the development of an original experimental set-up that can extract the emission spectrum of a single nanoantenna in the far field. Following the results obtained with single nanoantennas, more complex structures comprised of several nanoantennas are investigated to characterize their interaction. This work paves the way towards design improvement of nanophotonic structures based on nanoantennas and control over their behavior in both the near field and the far field
Liu, Huanhuan. „A novel optical bio-chemical sensor based on hybrid nanostructures of Bowtie nanoantennas and Fabry-Perot Interferometer“. Phd thesis, Ecole Centrale de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-01064196.
Der volle Inhalt der QuelleRastogi, Rishabh. „Engineered Electromagnetic Hot-spots for Highly Sensitive (Bio)molecular Detection by Plasmonic Specytroscopies“. Thesis, Troyes, 2020. http://www.theses.fr/2020TROY0018.
Der volle Inhalt der QuelleNanoplasmonic sensing relies on enhanced electromagnetic fields at the vicinity of nanostructured metal surface to detect molecules at ultra-low concentrations. The EM enhancements are strongly pronounced at junctions between adjacent nanostructures resulting in gap hot-spots. EM enhancements at these hot-spots increase non-linearly as a function of gap distances down to sub-10 regime. Analyte present at these gaps can leverage these EM enhancements, resulting in ultra-high sensitivity in detection. However, such confining gaps affect the ability of large analytes such as biomolecules to enter and thereby leverage EM fields within the gaps. This presents spatial needs to enhance EM fields at odds with those for accommodating biomolecular interactions. This thesis demonstrates the rational design of array configurations that allows the EM hotspots to be better leveraged by the reporter of biomolecular binding event. The thesis uses molecular self-assembly based approach to fabricate reproducible plasmonic nanoarrays on full wafers. Multiple parameters are considered including the dimension, shape, and density of hotspots, surface functionalization, and the choice of substrates, to demonstrate quantitative detection of molecules down to picomolar concentrations
Aouani, Heykel. „Nano-antennes optiques pour l'exaltation et le contrôle de la fluorescence moléculaire dans des volumes sub-longueur d'onde“. Phd thesis, Université Paul Cézanne - Aix-Marseille III, 2011. http://tel.archives-ouvertes.fr/tel-00624233.
Der volle Inhalt der Quelle