Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Nano-Li2S“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Nano-Li2S" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Nano-Li2S"
Liang, Sheng, Jie Chen, Xuehua He, Lingli Liu, Ningning Zhou, Lei Hu, Lili Wang et al. „N–Doped Porous Carbon Microspheres Derived from Yeast as Lithium Sulfide Hosts for Advanced Lithium-Ion Batteries“. Processes 9, Nr. 10 (14.10.2021): 1822. http://dx.doi.org/10.3390/pr9101822.
Der volle Inhalt der QuelleZhang, Shengnan, Dongming Liu, Lin Zhang, Jianwei Li, Guoqing Zhao, Lijie Ci und Guanghui Min. „Interface Engineering of a NASICON-Type Electrolyte Using Ultrathin CuS Film for Lithium Metal Batteries“. Batteries 9, Nr. 4 (24.03.2023): 194. http://dx.doi.org/10.3390/batteries9040194.
Der volle Inhalt der QuelleWu, Yunwen, Toshiyuki Momma, Hiroki Nara, Tao Hang, Ming Li und Tetsuya Osaka. „Synthesis of Lithium Sulfide (Li2S) Wrapped Carbon Nano Composite for Binder-Free Li2S Cathode“. Journal of The Electrochemical Society 167, Nr. 2 (28.01.2020): 020531. http://dx.doi.org/10.1149/1945-7111/ab6b0c.
Der volle Inhalt der QuelleHwang, Jang-Yeon, Subeom Shin, Chong S. Yoon und Yang-Kook Sun. „Nano-compacted Li2S/Graphene Composite Cathode for High-Energy Lithium–Sulfur Batteries“. ACS Energy Letters 4, Nr. 12 (11.10.2019): 2787–95. http://dx.doi.org/10.1021/acsenergylett.9b01919.
Der volle Inhalt der QuelleSun, Dan, Yoon Hwa, Yue Shen, Yunhui Huang und Elton J. Cairns. „Li2S nano spheres anchored to single-layered graphene as a high-performance cathode material for lithium/sulfur cells“. Nano Energy 26 (August 2016): 524–32. http://dx.doi.org/10.1016/j.nanoen.2016.05.033.
Der volle Inhalt der QuelleSuo, Liumin, Yujie Zhu, Fudong Han, Tao Gao, Chao Luo, Xiulin Fan, Yong-Sheng Hu und Chunsheng Wang. „Carbon cage encapsulating nano-cluster Li2S by ionic liquid polymerization and pyrolysis for high performance Li–S batteries“. Nano Energy 13 (April 2015): 467–73. http://dx.doi.org/10.1016/j.nanoen.2015.02.021.
Der volle Inhalt der QuelleThripuranthaka, M., Vikash Chaturvedi, Pravin Kumari Dwivedi, Arun Torris und Manjusha V. Shelke. „3D x-ray microtomography investigations on the bimodal porosity and high sulfur impregnation in 3D carbon foam for Li–S battery application“. Journal of Physics: Energy 4, Nr. 1 (01.01.2022): 014003. http://dx.doi.org/10.1088/2515-7655/ac4c34.
Der volle Inhalt der QuelleRoberts, Edward, Mohammad Rahimi, Asghar Molaei Dehkordi, Fatemeh ShakeriHosseinabad, Maedeh Pahlevaninezhad und Ashutosh Kumar Singh. „(Invited) Redox Flow Battery Innovation“. ECS Meeting Abstracts MA2022-01, Nr. 3 (07.07.2022): 483. http://dx.doi.org/10.1149/ma2022-013483mtgabs.
Der volle Inhalt der QuelleFeng, Yan, Yuliang Zhang, Guixiang Du, Jingbo Zhang, Miao Liu und Xiaohui Qu. „Li2S–Embedded copper metal–organic framework cathode with superior electrochemical performance for Li–S batteries“. New Journal of Chemistry 42, Nr. 16 (2018): 13775–83. http://dx.doi.org/10.1039/c8nj02370k.
Der volle Inhalt der QuelleManjum, Marjanul, Saheed Adewale Lateef, Hunter Addison McRay, William Earl Mustain und Golareh Jalilvand. „Low-Cost Processing of Highly Durable (>1000 cycles) Sulfur Cathodes for Li-S Batteries“. ECS Meeting Abstracts MA2022-02, Nr. 6 (09.10.2022): 588. http://dx.doi.org/10.1149/ma2022-026588mtgabs.
Der volle Inhalt der QuelleDissertationen zum Thema "Nano-Li2S"
Wang, Hongjiao. „Liquid phase synthesis and application of sulfide solid electrolyte“. Electronic Thesis or Diss., Université de Rennes (2023-....), 2023. http://www.theses.fr/2023URENS101.
Der volle Inhalt der QuelleTraditional Li-ion batteries use organic liquid electrolytes, which are susceptible to high temperatures due to their low flash point and high volatility. Therefore, it becomes one of the research hotspots for next generation chemical energy storage batteries to replace liquid electrolytes with solid electrolytes. In this thesis, a liquid-phase method using LiEt3BH or Li-Naph as raw materials is invented to synthesize Li3PS4 precursor sol and to obtain monodispersed Li3PS4 nanoparticles. This thesis also develops Li3PS4 sol exhibiting excellent compatibility with Li anodes, so that a Li3PS4 protective layer can be coated on Li by spin-coating of the sol. As a result, the lithium symmetrical cells with Li3PS4-modified lithium electrodes can be cycled stably for 800 h at 1 mA cm−2. To further improve the cycling stability of the Li anode under an extremely high current density, a Ag/Li-LiF-PEO (alloy, inorganic and organic) three-layer structure is proposed. The Ag/Li-LiF-PEO structure enhances the cycling stability of Li anodes under ultrahigh current density, which is demonstrated in lithium symmetrical batteries and Li//LFP batteries. At an ultrahigh current density of 20 mA cm-2, the lithium symmetrical cell survives a 1450-cycle test. This study may contribute to the development of high-performance Li metal batteries
Konferenzberichte zum Thema "Nano-Li2S"
Cho, Moonju, Sungwoo Noh, Jinoh Son, Jongyeob Park und Dongwook Shin. „Surface modification of LiCoO2 with nano Li2SO4 for all-solid-state lithium ion batteries using Li2S-P2S5 glass-ceramics“. In 2017 IEEE 12th Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2017. http://dx.doi.org/10.1109/nmdc.2017.8350517.
Der volle Inhalt der Quelle