Thanh Binh, Nguyen Thi, Nguyen Thi Hai Yen, Dang Kim Thu, Nguyen Thanh Hai und Bui Thanh Tung. „The Potential of Medicinal Plants and Bioactive Compounds in the Fight Against COVID-19“. VNU Journal of Science: Medical and Pharmaceutical Sciences 37, Nr. 3 (14.09.2021). http://dx.doi.org/10.25073/2588-1132/vnumps.4372.
Annotation:
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus , is causing a serious worldwide COVID-19 pandemic. The emergence of strains with rapid spread and unpredictable changes is the cause of the increase in morbidity and mortality rates. A number of drugs as well as vaccines are currently being used to relieve symptoms, prevent and treat the disease caused by this virus. However, the number of approved drugs is still very limited due to their effectiveness and side effects. In such a situation, medicinal plants and bioactive compounds are considered a highly valuable source in the development of new antiviral drugs against SARS-CoV-2. This review summarizes medicinal plants and bioactive compounds that have been shown to act on molecular targets involved in the infection and replication of SARS-CoV-2.
Keywords: Medicinal plants, bioactive compounds, antivirus, SARS-CoV-2, COVID-19
References
[1] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019, Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[2] World Health Organization, WHO Coronavirus (COVID-19) Dashboard, https://covid19.who.int, 2021 (accessed on: August 27, 2021).[3] H. Wang, P. Yang, K. Liu, F. Guo, Y. Zhang et al., SARS Coronavirus Entry into Host Cells Through a Novel Clathrin- and Caveolae-Independent Endocytic Pathway, Cell Research, Vol. 18, No. 2, 2008, pp. 290-301, https://doi.org/10.1038/cr.2008.15.[4] A. Zumla, J. F. W. Chan, E. I. Azhar, D. S. C. Hui, K. Y. Yuen., Coronaviruses-Drug Discovery and Therapeutic Options, Nature Reviews Drug Discovery, Vol. 15, 2016, pp. 327-347, https://doi.org/10.1038/nrd.2015.37.[5] A. Prasansuklab, A. Theerasri, P. Rangsinth, C. Sillapachaiyaporn, S. Chuchawankul, T. Tencomnao, Anti-COVID-19 Drug Candidates: A Review on Potential Biological Activities of Natural Products in the Management of New Coronavirus Infection, Journal of Traditional and Complementary Medicine, Vol. 11, 2021, pp. 144-157, https://doi.org/10.1016/j.jtcme.2020.12.001.[6] R. E. Ferner, J. K. Aronson, Chloroquine and Hydroxychloroquine in Covid-19, BMJ, Vol. 369, 2020, https://doi.org/10.1136/bmj.m1432[7] J. Remali, W. M. Aizat, A Review on Plant Bioactive Compounds and Their Modes of Action Against Coronavirus Infection, Frontiers in Pharmacology, Vol. 11, 2021, https://doi.org/10.3389/fphar.2020.589044.[8] Y. Chen, Q. Liu, D. Guo, Emerging Coronaviruses: Genome Structure, Replication, and Pathogenesis, Medical Virology, Vol. 92, 2020, pp. 418‐423. https://doi.org/10.1002/jmv.25681.[9] B. Benarba, A. Pandiella, Medicinal Plants as Sources of Active Molecules Against COVID-19, Frontiers in Pharmacology, Vol. 11, 2020, https://doi.org/10.3389/fphar.2020.01189.[10] N. T. Chien, P. V. Trung, N. N. Hanh, Isolation Tribulosin, a Spirostanol Saponin from Tribulus terrestris L, Can Tho University Journal of Science, Vol. 10, 2008, pp. 67-71 (in Vietnamese).[11] V. Q. Thang Study on Extracting Active Ingredient Protodioscin from Tribulus terrestris L.: Doctoral dissertation, VNU University of Science, 2018 (in Vietnamese).[12] Y. H. Song, D. W. Kim, M. J. C. Long, H. J. Yuk, Y. Wang, N. Zhuang et al., Papain-Like Protease (Plpro) Inhibitory Effects of Cinnamic Amides from Tribulus terrestris Fruits, Biological and Pharmaceutical Bulletin, Vol. 37, No. 6, 2014, pp. 1021-1028, https://doi.org/10.1248/bpb.b14-00026.[13] D. Dermawan, B. A. Prabowo, C. A. Rakhmadina, In Silico Study of Medicinal Plants with Cyclodextrin Inclusion Complex as The Potential Inhibitors Against SARS-Cov-2 Main Protease (Mpro) and Spike (S) Receptor, Informatics in Medicine Unlocked, Vol. 25, 2021, pp. 1-18, https://doi.org/10.1016/j.imu.2021.100645.[14] R. Dang, S. Gezici, Immunomodulatory Effects of Medicinal Plants and Natural Phytochemicals in Combating Covid-19, The 6th International Mediterranean Symposium on Medicinal and Aromatic Plants (MESMAP-6), Izmir, Selcuk (Ephesus), Turkey, 2020, pp. 12-13.[15] G. Jiangning, W. Xinchu, W. Hou, L. Qinghua, B. Kaishun, Antioxidants from a Chinese Medicinal Herb–Psoralea corylifolia L., Food Chemistry, Vol. 9, No. 2, 2005, pp. 287-292, https://doi.org/10.1016/j.foodchem.2004.04.029.[16] B. Ruan, L. Y. Kong, Y. Takaya, M. Niwa, Studies on The Chemical Constituents of Psoralea corylifolia L., Journal of Asian Natural Products Research, Vol. 9, No. 1, 2007, pp. 41-44, https://doi.org/10.1080/10286020500289618.[17] D. T. Loi, Vietnamese Medicinal Plants and Herbs, Medical Publishing House, Hanoi, 2013 (in Vietnamese).[18] S. Mazraedoost, G. Behbudi, S. M. Mousavi, S. A. Hashemi, Covid-19 Treatment by Plant Compounds, Advances in Applied NanoBio-Technologies, Vol. 2, No. 1, 2021, pp. 23-33, https://doi.org/10.47277/AANBT/2(1)33.[19] B. A. Origbemisoye, S. O. Bamidele, Immunomodulatory Foods and Functional Plants for COVID-19 Prevention: A Review, Asian Journal of Medical Principles and Clinical Practice, 2020, pp. 15-26, https://journalajmpcp.com/index.php/AJMPCP/article/view/30124[20] A. Mandal, A. K. Jha, B. Hazra, Plant Products as Inhibitors of Coronavirus 3CL Protease, Frontiers in Pharmacology, Vol. 12, 2021, pp. 1-16, https://doi.org/10.3389/fphar.2021.583387[21] N. H. Tung, V. D. Loi, B. T. Tung, L.Q. Hung, H. B. Tien et al., Triterpenen Ursan Frame Isolated from the Roots of Salvia Miltiorrhiza Bunge Growing in Vietnam, VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 32, No. 2, 2016, pp. 58-62, https://js.vnu.edu.vn/MPS/article/view/3583 (in Vietnamese).[22] J. Y. Park, J. H. Kim, Y. M. Kim, H. J. Jeong, D. W. Kim, K. H. Park et al., Tanshinones as Selective and Slow-Binding Inhibitors for SARS-CoV Cysteine Proteases. Bioorganic and Medicinal Chemistry, Vol. 20, No. 19, 2012, pp. 5928-5935, https://doi.org/10.1016/j.bmc.2012.07.038.[23] F. Hamdani, N. Houari, Phytotherapy of Covid-19. A Study Based on a Survey in North Algeria, Phytotherapy, Vol. 18, No. 5, 2020, pp. 248-254, https://doi.org/10.3166/phyto-2020-0241.[24] P. T. L. Huong, N. T. Dinh, Chemical Composition And Antibacterial Activity of The Essential Oil From The Leaves of Regrowth Eucalyptus Collected from Viet Tri City, Phu Tho Province, Vietnam Journal of Science, Technology and Engineering, Vol. 18, No. 1, 2020, pp. 54-61 (in Vietnamese).[25] M. Asif, M. Saleem, M. Saadullah, H. S. Yaseen, R. Al Zarzour, COVID-19 and Therapy with Essential Oils Having Antiviral, Anti-Inflammatory, and Immunomodulatory Properties, Inflammopharmacology, Vol. 28, 2020, pp. 1153-1161, https://doi.org/10.1007/s10787-020-00744-0.[26] I. Jahan, O. Ahmet, Potentials of Plant-Based Substance to Inhabit and Probable Cure for The COVID-19, Turkish Journal of Biology, Vol. 44, No. SI-1, 2020, pp. 228-241, https://doi.org/10.3906/biy-2005-114.[27] A. D. Sharma, I. Kaur, Eucalyptus Essential Oil Bioactive Molecules from Against SARS-Cov-2 Spike Protein: Insights from Computational Studies, Res Sq., 2021, pp. 1-6, https://doi.org/10.21203/ rs.3.rs-140069/v1. [28] K. Rajagopal, P. Varakumar, A. Baliwada, G. Byran, Activity of Phytochemical Constituents of Curcuma Longa (Turmeric) and Andrographis Paniculata Against Coronavirus (COVID-19): An in Silico Approach, Future Journal of Pharmaceutical Sciences, Vol. 6, No. 1, 2020, pp. 1-10, https://doi.org/10.1186/s43094-020-00126-x[29] J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan et al., Structure of The SARS-CoV-2 Spike Receptor-Binding Domain Bound to The ACE2 Receptor, Nature, Vol. 581, No. 7807, 2020, pp. 215-220, https://doi.org/10.1038/s41586-020-2180-5.[30] M. Letko, A. Marzi, V. Munster, Functional Assessment of Cell Entry and Receptor Usage for SARS-Cov-2 and Other Lineage B Betacoronaviruses, Nature Microbiology, Vol. 5, No. 4, 2020, pp. 562-569, https://doi.org/10.1038/s41564-020-0688-y.[31] C. Yi, X. Sun, J. Ye, L. Ding, M. Liu, Z. Yang et al., Key Residues of The Receptor Binding Motif in The Spike Protein of SARS-Cov-2 That Interact with ACE2 and Neutralizing Antibodies, Cellular and Molecular Immunology, Vol. 17, No. 6, 2020, pp. 621-630, https://doi.org/10.1038/s41423-020-0458-z.[32] N. T. Thom, Study on The Composition and Biological Activities of Flavonoids from The Roots of Scutellaria baicalensis: Doctoral Dissertation, Hanoi University of Science and Technology, 2018 (in Vietnamese).[33] Y. J. Tang, F. W. Zhou, Z. Q. Luo, X. Z. Li, H. M. Yan, M. J. Wang et al., Multiple Therapeutic Effects of Adjunctive Baicalin Therapy in Experimental Bacterial Meningitis, Inflammation, Vol. 33, No. 3, 2010, pp. 180-188, https://doi.org/10.1007/s10753-009-9172-9.[34] H. Liu, F. Ye, Q. Sun, H. Liang, C. Li, S. Li et al., Scutellaria Baicalensis Extract and Baicalein Inhibit Replication of SARS-Cov-2 and Its 3C-Like Protease in Vitro, Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 36, No. 1, 2021, pp. 497-503, https://doi.org/10.1080/14756366.2021.1873977.[35] Z. Iqbal, H. Nasir, S. Hiradate, Y. Fujii, Plant Growth Inhibitory Activity of Lycoris Radiata Herb. and The Possible Involvement of Lycorine as an Allelochemical, Weed Biology and Management, Vol. 6, No. 4, 2006, pp. 221-227, https://doi.org/10.1111/j.1445-6664.2006.00217.x.[36] S. Y. Li, C. Chen, H. Q. Zhang, H. Y. Guo, H. Wang, L. Wang et al., Identification of Natural Compounds with Antiviral Activities Against SARS-Associated Coronavirus, Antiviral Research, Vol. 67, No. 1, 2005, pp. 18-23, https://doi.org/10.1016/j.antiviral.2005.02.007.[37] S. Kretzing, G. Abraham, B. Seiwert, F. R. Ungemach, U. Krügel, R. Regenthal, Dose-dependent Emetic Effects of The Amaryllidaceous Alkaloid Lycorine in Beagle Dogs, Toxicon, Vol. 57, No. 1, 2011, pp. 117-124, https://doi.org/10.1016/j.toxicon.2010.10.012.[38] Y. N. Zhang, Q. Y. Zhang, X. D. Li, J. Xiong, S. Q. Xiao, Z. Wang, et al., Gemcitabine, Lycorine and Oxysophoridine Inhibit Novel Coronavirus (SARS-Cov-2) in Cell Culture, Emerging Microbes & Infections, Vol. 9, No. 1, 2020, pp. 1170-1173, https://doi.org/10.1080/22221751.2020.1772676.[39] Y. H. Jin, J. S. Min, S. Jeon, J. Lee, S. Kim, T. Park et al., Lycorine, a Non-Nucleoside RNA Dependent RNA Polymerase Inhibitor, as Potential Treatment for Emerging Coronavirus Infections, Phytomedicine, Vol. 86, 2021, pp. 1-8, https://doi.org/10.1016/j.phymed.2020.153440.[40] H. V. Hoa, P. V. Trung, N. N. Hanh, Isolation Andrographolid and Neoandrographolid from Andrographis Paniculata Nees, Can Tho University Journal of Science, Vol. 10, 2008, pp. 25-30 (in Vietnamese)[41] S. K. Enmozhi, K. Raja, I. Sebastine, J. Joseph, Andrographolide as a Potential Inhibitor Of SARS-Cov-2 Main Protease: An in Silico Approach, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 9, 2021, pp. 3092-3098, https://doi.org/10.1080/07391102.2020.1760136.[42] S. A. Lakshmi, R. M. B. Shafreen, A. Priya, K. P. Shunmugiah, Ethnomedicines of Indian Origin for Combating COVID-19 Infection by Hampering The Viral Replication: Using Structure-Based Drug Discovery Approach, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 13, 2020, pp. 4594-4609, https://doi.org/10.1080/07391102.2020.1778537.[43] N. P. L. Laksmiani, L. P. F. Larasanty, A. A. G. J. Santika, P. A. A. Prayoga, A. A. I. K. Dewi, N. P. A. K. Dewi, Active Compounds Activity from The Medicinal Plants Against SARS-Cov-2 Using in Silico Assay, Biomedical and Pharmacology Journal, Vol. 13, No. 2, 2020, pp. 873-881, https://dx.doi.org/10.13005/bpj/1953.[44] N. A. Murugan, C. J. Pandian, J. Jeyakanthan, Computational Investigation on Andrographis Paniculata Phytochemicals to Evaluate Their Potency Against SARS-Cov-2 in Comparison to Known Antiviral Compounds in Drug Trials, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 12, 2020, pp. 4415-4426, https://doi.org/10.1080/07391102.2020.1777901.[45] S. Hiremath, H. V. Kumar, M. Nandan, M. Mantesh, K. Shankarappa,V. Venkataravanappa et al., In Silico Docking Analysis Revealed The Potential of Phytochemicals Present in Phyllanthus Amarus and Andrographis Paniculata, Used in Ayurveda Medicine in Inhibiting SARS-Cov-2, 3 Biotech, Vol. 11, No. 2, 2021, pp. 1-18, https://doi.org/10.1007/s13205-020-02578-7.[46] K. S. Ngiamsuntorn, A. Suksatu, Y. Pewkliang, P. Thongsri, P. Kanjanasirirat, S. Manopwisedjaroen, et al., Anti-SARS-Cov-2 Activity of Andrographis Paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives, Journal of Natural Products, Vol. 84, No. 4, 2021, pp. 1261-1270, https://doi.org/10.1021/acs.jnatprod.0c01324.[47] D. X. Em, N. T. T. Dai, N. T. T. Tram, D. X. Chu, Four Compounds Isolated from Azadirachta Indica Jus leaves. F., Meliaceae, Pharmaceutical Journal, Vol. 59, No. 7, 2019, pp. 33-36 (in Vietnamese).[48] V. V Do, N. T. Thang, N. T. Minh, N. N. Hanh, Isolation, Purification and Investigation on Antimicrobial Activity of Salanin from Neem Seed Kernel (Azadirachta Indica A. Juss) of The Neem Tree Planted in Ninh Thuan Province, Vietnam, Journal of Science and Technology, Vol. 44, No. 2, 2006, pp. 24-31 (in Vietnamese).[49] P. I. Manzano Santana, J. P. P. Tivillin, I. A. Choez Guaranda, A. D. B. Lucas, A. Katherine, Potential Bioactive Compounds of Medicinal Plants Against New Coronavirus (SARS-Cov-2): A Review, Bionatura, Vol. 6, No. 1, 2021, pp. 1653-1658, https://doi.org/10.21931/RB/2021.06.01.30[50] S. Borkotoky, M. Banerjee, A Computational Prediction of SARS-Cov-2 Structural Protein Inhibitors from Azadirachta Indica (Neem), Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 11, 2021, pp. 4111-4121, https://doi.org/10.1080/07391102.2020.1774419.[51] R. Jager, R. P. Lowery, A. V. Calvanese, J. M. Joy, M. Purpura, J. M. Wilson, Comparative Absorption of Curcumin Formulations, Nutrition Journal, Vol. 13, No. 11, 2014, https://doi.org/10.1186/1475-2891-13-11.[52] D. Praditya, L. Kirchhoff, J. Bruning, H. Rachmawati, J. Steinmann, E. Steinmann, Anti-infective Properties of the Golden Spice Curcumin, Front Microbiol, Vol. 10, No. 912, 2019, https://doi.org/10.3389/fmicb.2019.00912.[53] C. C. Wen, Y. H. Kuo, J. T. Jan, P. H. Liang, S. Y. Wang, H. G. Liu et al., Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities Against Severe Acute Respiratory Syndrome Coronavirus, Journal of Medicinal Chemistry, Vol. 50, No. 17, 2007, pp. 4087-4095, https://doi.org/10.1021/jm070295s.[54] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, No. 10224, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[55] M. Kandeel, M. Al Nazawi, Virtual Screening and Repurposing of FDA Approved Drugs Against COVID-19 Main Protease, Life Sciences, Vol. 251, No. 117627, 2020, pp. 1-5, https://doi.org/10.1016/j.lfs.2020.117627.[56] V. K. Maurya, S. Kumar, A. K. Prasad, M. L. B. Bhatt, S. K. Saxena, Structure-Based Drug Designing for Potential Antiviral Activity of Selected Natural Products from Ayurveda Against SARS-CoV-2 Spike Glycoprotein and Its Cellular Receptor, Virusdisease, Vol. 31, No. 2, 2020, pp. 179-193, https://doi.org/10.1007/s13337-020-00598-8.[57] M. Hoffmann, H. Kleine Weber, S. Schroeder, N. Kruger, T. Herrler, S. Erichsen et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, Vol. 181, No. 2, 2020, pp. 271-280, https://doi.org/10.1016/j.cell.2020.02.052.[58] S. Katta, A. Srivastava, R. L. Thangapazham, I. L. Rosner, J. Cullen, H. Li et al., Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells, International Journal of Molecular Sciences, Vol. 20, No. 19, 2019, pp. 4891-4907, https://doi.org/10.3390/ijms20194891.[59] D. Ting, N. Dong, L. Fang, J. Lu, J. Bi, S. Xiao et al., Multisite Inhibitors for Enteric Coronavirus: Antiviral Cationic Carbon Dots Based on Curcumin, ACS Applied Nano Materials, Vol. 1, No. 10, 2018, pp. 5451-5459, https://doi.org/10.1021/acsanm.8b00779.[60] T. Huynh, H. Wang, B. Luan, In Silico Exploration of the Molecular Mechanism of Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2's Main Protease, the Journal of Physical Chemistry Letters, Vol. 11, No. 11, 2020, pp. 4413-4420, https://doi.org/10.1021/acs.jpclett.0c00994.[61] D. D'Ardes, A. Boccatonda, I. Rossi, M. T. Guagnano, COVID-19 and RAS: Unravelling an Unclear Relationship, International Journal of Molecular Sciences, Vol. 21, No. 8, 2020, pp. 3003-3011, https://doi.org/10.3390/ijms21083003. [62] X. F. Pang, L. H. Zhang, F. Bai, N. P. Wang, R. E. Garner, R. J. McKallip et al., Attenuation of Myocardial Fibrosis with Curcumin is Mediated by Modulating Expression of Angiotensin II AT1/AT2 Receptors and ACE2 in Rats, Drug Design Development Therapy, Vol. 9, 2015, pp. 6043-6054, https://doi.org/10.2147/DDDT.S95333.[63] Y. Yao, W. Wang, M. Li, H. Ren, C. Chen, J. Wang et al., Curcumin Exerts its Anti-Hypertensive Effect by Down-Regulating the AT1 Receptor in Vascular Smooth Muscle Cells, Scientific Reports, Vol. 6, No. 25579, 2016, pp. 1-6, https://doi.org/10.1038/srep25579.[64] V. J. Costela Ruiz, R. Illescas Montes, J. M. Puerta Puerta, C. Ruiz, L. Melguizo Rodríguez, SARS-CoV-2 Infection: The Role of Cytokines in COVID-19 Disease, Cytokine Growth Factor Reviews, Vol. 54, 2020, pp. 62-75, https://doi.org/10.1016/j.cytogfr.2020.06.001.[65] H. Valizadeh, S. Abdolmohammadi Vahid, S. Danshina, M. Ziya Gencer, A. Ammari, A. Sadeghi et al., Nano-Curcumin Therapy, a Promising Method in Modulating Inflammatory Cytokines in COVID-19 Patients, International Immunopharmacology, Vol. 89 (PtB), No. 107088, 2020, pp. 1-12, https://doi.org/10.1016/j.intimp.2020.107088.[66] Y. H. Lo, R. D. Lin, Y. P. Lin, Y. L. Liu, M. H. Lee, Active Constituents from Sophora Japonica Exhibiting Cellular Tyrosinase Inhibition in Human Epidermal Melanocytes, Journal of Ethnopharmacology, Vol. 124, No. 3, 2009, pp. 625-629, https://doi.org/10.1016/j.jep.2009.04.053.[67] A. Robaszkiewicz, A. Balcerczyk, G. Bartosz, Antioxidative and Prooxidative Effects of Quercetin on A549 Cells, Cell Biology International, Vol. 31, No. 10, 2007, pp. 1245-1250, https://doi.org/10.1016/j.cellbi.2007.04.009[68] N. Uchide, H. Toyoda, Antioxidant Therapy as a Potential Approach to Severe Influenza-associated Complications, Molecules (Basel, Switzerland), Vol. 16, No. 3, 2011, pp. 2032-2052, https://doi.org/10.3390/molecules16032032.[69] M. P. Nair, C. Kandaswami, S. Mahajan, K. C. Chadha, R. Chawda, H. Nair et al., The Flavonoid, Quercetin, Differentially Regulates Th-1 (IFNgamma) and Th-2 (IL4) Cytokine Gene Expression by Normal Peripheral Blood Mononuclear Cells, Biochimica et Biophysica Acta - Molecular Cell Research, Vol. 1593, No. 1, 2002, pp. 29-36, https://doi.org/10.1016/s0167-4889(02)00328-2.[70] X. Chen, Z. Wang, Z. Yang, J. Wang, Y. Xu, R. X. Tan et al., Houttuynia Cordata Blocks HSV Infection Through Inhibition of NF-κB Activation, Antiviral Research, Vol. 92, No. 2, 2011, pp. 341-345, https://doi.org/10.1016/j.antiviral.2011.09.005.[71] T. N. Kaul, E. J. Middleton, P. L. Ogra, Antiviral Effect of Flavonoids on Human Viruses, Journal of Medical Virology, Vol. 15. No. 1, 1985, pp. 71-79, https://doi.org/10.1002/jmv.1890150110.[72] K. Zandi, B. T. Teoh, S. S. Sam, P. F. Wong, M. R. Mustafa, S. AbuBakar, Antiviral Activity of Four Types of Bioflavonoid Against Dengue Virus Type-2, Virology Journal, Vol. 8, No. 1, 2011, pp. 560-571, https://doi.org/10.1186/1743-422X-8-560.[73] J. Y. Park, H. J. Yuk, H. W. Ryu, S. H. Lim, K. S. Kim, K. H. Park et al., Evaluation of Polyphenols from Broussonetia Papyrifera as Coronavirus Protease Inhibitors, Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 32, No. 1, 2017, pp. 504-515, https://doi.org/10.1080/14756366.2016.1265519.[74] S. C. Cheng, W. C. Huang, J. H. S. Pang, Y. H. Wu, C. Y. Cheng, Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways, International Journal of Molecular Sciences, Vol. 20, No. 12, 2019, pp. 2957-2981, https://doi.org/10.3390/ijms20122957. [75] O. J. Lara Guzman, J. H. Tabares Guevara, Y. M. Leon Varela, R. M. Álvarez, M. Roldan, J. A. Sierra et al., Proatherogenic Macrophage Activities Are Targeted by The Flavonoid Quercetin, The Journal of Pharmacology and Experimental Therapeutics, Vol. 343, No. 2, 2012, pp. 296-303, https://doi.org/10.1124/jpet.112.196147.[76] A. Saeedi Boroujeni, M. R. Mahmoudian Sani, Anti-inflammatory Potential of Quercetin in COVID-19 Treatment, Journal of Inflammation, Vol. 18, No. 1, 2021, pp. 3-12, https://doi.org/10.1186/s12950-021-00268-6.[77] M. Smith, J. C. Smith, Repurposing Therapeutics for COVID-19: Supercomputer-based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-human ACE2 Interface, ChemRxiv, 2020, pp. 1-28, https://doi.org/10.26434/chemrxiv.11871402.v4.[78] S. Khaerunnisa, H. Kurniawan, R. Awaluddin, S. Suhartati, S. Soetjipto, Potential Inhibitor of COVID-19 Main Protease (Mpro) from Several Medicinal Plant Compounds by Molecular Docking Study, Preprints, 2020, pp. 1-14, https://doi.org/10.20944/preprints202003.0226.v1.[79] J. M. Calderón Montaño, E. B. Morón, C. P. Guerrero, M. L. Lázaro, A Review on the Dietary Flavonoid Kaempferol, Mini Reviews in Medicinal Chemistry, Vol. 11, No. 4, 2011, pp. 298-344, https://doi.org/10.2174/138955711795305335.[80] A. Y. Chen, Y. C. Chen, A Review of the Dietary Flavonoid, Kaempferol on Human Health and Cancer Chemoprevention, Food Chem, Vol. 138, No. 4, 2013, pp. 2099-2107, https://doi.org/10.1016/j.foodchem.2012.11.139.[81] S. Schwarz, D. Sauter, W. Lu, K. Wang, B. Sun, T. Efferth et al., Coronaviral Ion Channels as Target for Chinese Herbal Medicine, Forum on Immunopathological Diseases and Therapeutics, Vol. 3, No. 1, 2012, pp. 1-13, https://doi.org/10.1615/ForumImmunDisTher.2012004378.[82] R. Zhang, X. Ai, Y. Duan, M. Xue, W. He, C. Wang et al., Kaempferol Ameliorates H9N2 Swine Influenza Virus-induced Acute Lung Injury by Inactivation of TLR4/MyD88-mediated NF-κB and MAPK Signaling Pathways, Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, Vol. 89, 2017, pp. 660-672, https://doi.org/10.1016/j.biopha.2017.02.081.[83] K. W. Chan, V. T. Wong, S. C. W. Tang, COVID-19: An Update on the Epidemiological, Clinical, Preventive and Therapeutic Evidence and Guidelines of Integrative Chinese-Western Medicine for the Management of 2019 Novel Coronavirus Disease, The American Journal of Chinese medicine, Vol. 48, No. 3, 2020, pp. 737-762, https://doi.org/10.1142/S0192415X20500378.[84] Y. F. Huang, C. Bai, F. He, Y. Xie, H. Zhou, Review on the Potential Action Mechanisms of Chinese Medicines in Treating Coronavirus Disease 2019 (COVID-19), Pharmacological Research, Vol. 158, No. 104939, 2020, pp. 1-10, https://doi.org/10.1016/j.phrs.2020.104939.[85] L. Xu, X. Zheng, Y. Wang, Q. Fan, M. Zhang, R. Li et al., Berberine Protects Acute Liver Failure in Mice Through Inhibiting Inflammation and Mitochondria-dependent Apoptosis, European Journal of Pharmacology, Vol. 819, 2018, pp. 161-168, https://doi.org/10.1016/j.ejphar.2017.11.013.[86] X. Chen, H. Guo, Q. Li, Y. Zhang, H. Liu, X. Zhang et al., Protective Effect of Berberine on Aconite‑induced Myocardial Injury and the Associated Mechanisms, Molecular Medicine Reports, Vol. 18, No. 5, 2018, pp. 4468-4476, https://doi.org/10.3892/mmr.2018.9476.[87] K. Hayashi, K. Minoda, Y. Nagaoka, T. Hayashi, S. Uesato, Antiviral Activity of Berberine and Related Compounds Against Human Cytomegalovirus, Bioorganic & Medicinal Chemistry Letters, Vol. 17, No. 6, 2007, pp. 1562-1564, https://doi.org/10.1016/j.bmcl.2006.12.085.[88] A. Warowicka, R. Nawrot, A. Gozdzicka Jozefiak, Antiviral Activity of Berberine, Archives of Virology, Vol. 165, No. 9, 2020, pp. 1935-1945, https://doi.org/10.1007/s00705-020-04706-3.[89] Z. Z. Wang, K. Li, A. R. Maskey, W. Huang, A. A. Toutov, N. Yang et al., A Small Molecule Compound Berberine as an Orally Active Therapeutic Candidate Against COVID-19 and SARS: A Computational and Mechanistic Study, FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, Vol. 35, No. 4, 2021, pp. e21360-21379, https://doi.org/10.1096/fj.202001792R.[90] A. Pizzorno, B. Padey, J. Dubois, T. Julien, A. Traversier, V. Dulière et al., In Vitro Evaluation of Antiviral Activity of Single and Combined Repurposable Drugs Against SARS-CoV-2, Antiviral Research, Vol. 181, No. 104878, 2020, https://doi.org/10.1016/j.antiviral.2020.104878.[91] B. Y. Zhang, M. Chen, X. C. Chen, K. Cao, Y. You, Y. J. Qian et al., Berberine Reduces Circulating Inflammatory Mediators in Patients with Severe COVID-19, The British Journal of Surgery, Vol. 108, No. 1, 2021, pp. e9-e11, https://doi.org/10.1093/bjs/znaa021.[92] K. P. Latté, K. E. Appel, A. Lampen, Health Benefits and Possible Risks of Broccoli - an Overview, Food and Chemical Toxicology : an International Journal Published for the British Industrial Biological Research Association, Vol. 49, No. 12, 2011, pp. 3287-3309, https://doi.org/10.1016/j.fct.2011.08.019.[93] C. Sturm, A. E. Wagner, Brassica-Derived Plant Bioactives as Modulators of Chemopreventive and Inflammatory Signaling Pathways, International Journal of Molecular Sciences, Vol. 18, No. 9, 2017, pp. 1890-1911, https://doi.org/10.3390/ijms18091890.[94] R. T. Ruhee, S. Ma, K. Suzuki, Sulforaphane Protects Cells against Lipopolysaccharide-Stimulated Inflammation in Murine Macrophages, Antioxidants (Basel, Switzerland), Vol. 8, No. 12, 2019, pp. 577-589, https://doi.org/10.3390/antiox8120577.[95] S. M. Ahmed, L. Luo, A. Namani, X. J. Wang, X. Tang, Nrf2 Signaling Pathway: Pivotal Roles in Inflammation, Biochimica et Biophysica Acta Molecular Basis of Disease, Vol. 1863, No. 2, 2017, pp. 585-597, https://doi.org/10.1016/j.bbadis.2016.11.005.[96] Z. Sun, Z. Niu, S. Wu, S. Shan, Protective Mechanism of Sulforaphane in Nrf2 and Anti-Lung Injury in ARDS Rabbits, Experimental Therapeutic Medicine, Vol. 15, No. 6, 2018, pp. 4911-4951, https://doi.org/10.3892/etm.2018.6036.[97] H. Y. Cho, F. Imani, L. Miller DeGraff, D. Walters, G. A. Melendi, M. Yamamoto et al., Antiviral Activity of Nrf2 in a Murine Model of Respiratory Syncytial Virus Disease, American Journal of Respiratory and Critical Care Medicine, Vol. 179, No. 2, 2009, pp. 138-150, https://doi.org/10.1164/rccm.200804-535OC.[98] M. J. Kesic, S. O. Simmons, R. Bauer, I. Jaspers, Nrf2 Expression Modifies Influenza A Entry and Replication in Nasal Epithelial Cells, Free Radical Biology & Medicine, Vol. 51, No. 2, 2011, pp. 444-453, https://doi.org/10.1016/j.freeradbiomed.2011.04.027.[99] A. Cuadrado, M. Pajares, C. Benito, J. J. Villegas, M. Escoll, R. F. Ginés et al., Can Activation of NRF2 Be a Strategy Against COVID-19?, Trends in Pharmacological Sciences, Vol. 41, No. 9, 2020, pp. 598-610, https://doi.org/10.1016/j.tips.2020.07.003.[100] J. Gasparello, E. D'Aversa, C. Papi, L. Gambari, B. Grigolo, M. Borgatti et al., Sulforaphane Inhibits the Expression of Interleukin-6 and Interleukin-8 Induced in Bronchial Epithelial IB3-1 Cells by Exposure to the SARS-CoV-2 Spike Protein, Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, Vol. 87, No. 53583, 2021, https://doi.org/10.1016/j.phymed.2021.153583.