Zeitschriftenartikel zum Thema „Named Entity Classification“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Named Entity Classification" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Nadeau, David, und Satoshi Sekine. „A survey of named entity recognition and classification“. Lingvisticæ Investigationes. International Journal of Linguistics and Language Resources 30, Nr. 1 (10.08.2007): 3–26. http://dx.doi.org/10.1075/li.30.1.03nad.
Der volle Inhalt der QuelleAhmad, Muhammad Tayyab, Muhammad Kamran Malik, Khurram Shahzad, Faisal Aslam, Asif Iqbal, Zubair Nawaz und Faisal Bukhari. „Named Entity Recognition and Classification for Punjabi Shahmukhi“. ACM Transactions on Asian and Low-Resource Language Information Processing 19, Nr. 4 (07.07.2020): 1–13. http://dx.doi.org/10.1145/3383306.
Der volle Inhalt der QuelleSteinberger, Ralf, und Bruno Pouliquen. „Cross-lingual Named Entity Recognition“. Lingvisticæ Investigationes. International Journal of Linguistics and Language Resources 30, Nr. 1 (10.08.2007): 135–62. http://dx.doi.org/10.1075/li.30.1.09ste.
Der volle Inhalt der QuelleEkbal, Asif, Sriparna Saha und Utpal Kumar Sikdar. „Multiobjective Optimization for Biomedical Named Entity Recognition and Classification“. Procedia Technology 6 (2012): 206–13. http://dx.doi.org/10.1016/j.protcy.2012.10.025.
Der volle Inhalt der QuelleShaalan, Khaled. „A Survey of Arabic Named Entity Recognition and Classification“. Computational Linguistics 40, Nr. 2 (Juni 2014): 469–510. http://dx.doi.org/10.1162/coli_a_00178.
Der volle Inhalt der QuelleASBAYOU, Omar. „Automatic Arabic Named Entity Extraction and Classification for Information Retrieval“. International Journal on Natural Language Computing 9, Nr. 6 (30.12.2020): 1–22. http://dx.doi.org/10.5121/ijnlc.2020.9601.
Der volle Inhalt der QuelleTan, Chuanqi, Wei Qiu, Mosha Chen, Rui Wang und Fei Huang. „Boundary Enhanced Neural Span Classification for Nested Named Entity Recognition“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 05 (03.04.2020): 9016–23. http://dx.doi.org/10.1609/aaai.v34i05.6434.
Der volle Inhalt der QuelleChoi, Yunsu, und Jeongwon Cha. „Korean Named Entity Recognition and Classification using Word Embedding Features“. Journal of KIISE 43, Nr. 6 (15.06.2016): 678–85. http://dx.doi.org/10.5626/jok.2016.43.6.678.
Der volle Inhalt der QuelleGoyal, Archana, Vishal Gupta und Manish Kumar. „Recent Named Entity Recognition and Classification techniques: A systematic review“. Computer Science Review 29 (August 2018): 21–43. http://dx.doi.org/10.1016/j.cosrev.2018.06.001.
Der volle Inhalt der QuelleMarchenko, O. O. „Machine-learning methods for text named entity recognition“. PROBLEMS IN PROGRAMMING, Nr. 2-3 (Juni 2016): 150–57. http://dx.doi.org/10.15407/pp2016.02-03.150.
Der volle Inhalt der QuelleRospocher, Marco, und Francesco Corcoglioniti. „Knowledge-driven joint posterior revision of named entity classification and linking“. Journal of Web Semantics 65 (Dezember 2020): 100617. http://dx.doi.org/10.1016/j.websem.2020.100617.
Der volle Inhalt der QuelleMalik, Muhammad Kamran. „Urdu Named Entity Recognition and Classification System Using Artificial Neural Network“. ACM Transactions on Asian and Low-Resource Language Information Processing 17, Nr. 1 (16.11.2017): 1–13. http://dx.doi.org/10.1145/3129290.
Der volle Inhalt der QuelleSaha, Sriparna, Asif Ekbal und Utpal Kumar Sikdar. „Named entity recognition and classification in biomedical text using classifier ensemble“. International Journal of Data Mining and Bioinformatics 11, Nr. 4 (2015): 365. http://dx.doi.org/10.1504/ijdmb.2015.067954.
Der volle Inhalt der QuelleBiswas, Arijit, Samarjeet Borah und Bishal Pradhan. „Named Entity Recognition System in Nepali using Naive Bayes Classification Technique“. International Journal of Computer Applications 145, Nr. 10 (15.07.2016): 1–6. http://dx.doi.org/10.5120/ijca2016910766.
Der volle Inhalt der QuelleHou, Wenfeng, Qing Liu und Longbing Cao. „Cognitive Aspects-Based Short Text Representation with Named Entity, Concept and Knowledge“. Applied Sciences 10, Nr. 14 (16.07.2020): 4893. http://dx.doi.org/10.3390/app10144893.
Der volle Inhalt der QuelleCucchiarelli, Alessandro, und Paola Velardi. „Unsupervised Named Entity Recognition Using Syntactic and Semantic Contextual Evidence“. Computational Linguistics 27, Nr. 1 (März 2001): 123–31. http://dx.doi.org/10.1162/089120101300346822.
Der volle Inhalt der QuelleArévalo Rodríguez, Montserrat, Montserrat Civit Torruella und Maria Antònia Martí. „MICE“. International Journal of Corpus Linguistics 9, Nr. 1 (29.04.2004): 53–68. http://dx.doi.org/10.1075/ijcl.9.1.03are.
Der volle Inhalt der QuelleWang, Yu, Yining Sun, Zuchang Ma, Lisheng Gao und Yang Xu. „An ERNIE-Based Joint Model for Chinese Named Entity Recognition“. Applied Sciences 10, Nr. 16 (18.08.2020): 5711. http://dx.doi.org/10.3390/app10165711.
Der volle Inhalt der QuelleBaksa, Krešimir, Dino Golović, Goran Glavaš und Jan Šnajder. „Tagging Named Entities in Croatian Tweets“. Slovenščina 2.0: empirical, applied and interdisciplinary research 4, Nr. 1 (05.02.2017): 20–41. http://dx.doi.org/10.4312/slo2.0.2016.1.20-41.
Der volle Inhalt der QuelleLee, Joohong, Sangwoo Seo und Yong Suk Choi. „Semantic Relation Classification via Bidirectional LSTM Networks with Entity-Aware Attention Using Latent Entity Typing“. Symmetry 11, Nr. 6 (13.06.2019): 785. http://dx.doi.org/10.3390/sym11060785.
Der volle Inhalt der QuelleAli, Mohammed, Guanzheng Tan und Aamir Hussain. „Bidirectional Recurrent Neural Network Approach for Arabic Named Entity Recognition“. Future Internet 10, Nr. 12 (13.12.2018): 123. http://dx.doi.org/10.3390/fi10120123.
Der volle Inhalt der QuelleSUZUKI, Masatoshi, Koji MATSUDA, Satoshi SEKINE, Naoaki OKAZAKI und Kentaro INUI. „A Joint Neural Model for Fine-Grained Named Entity Classification of Wikipedia Articles“. IEICE Transactions on Information and Systems E101.D, Nr. 1 (2018): 73–81. http://dx.doi.org/10.1587/transinf.2017swp0005.
Der volle Inhalt der QuelleSeti, Xieraili, Aishan Wumaier, Turgen Yibulayin, Diliyaer Paerhati, Lulu Wang und Alimu Saimaiti. „Named-Entity Recognition in Sports Field Based on a Character-Level Graph Convolutional Network“. Information 11, Nr. 1 (05.01.2020): 30. http://dx.doi.org/10.3390/info11010030.
Der volle Inhalt der QuelleHu, Anwen, Zhicheng Dou, Jian-Yun Nie und Ji-Rong Wen. „Leveraging Multi-Token Entities in Document-Level Named Entity Recognition“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 05 (03.04.2020): 7961–68. http://dx.doi.org/10.1609/aaai.v34i05.6304.
Der volle Inhalt der QuelleAkkasi, Abbas, Ekrem Varoğlu und Nazife Dimililer. „ChemTok: A New Rule Based Tokenizer for Chemical Named Entity Recognition“. BioMed Research International 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/4248026.
Der volle Inhalt der QuelleKhan, Rehan, und A. J. Singh. „Developing and Deploying Algorithms for Information Extraction using Classification Measures for Named Entity Recognition“. International Journal of Computer Sciences and Engineering 6, Nr. 10 (31.10.2018): 235–48. http://dx.doi.org/10.26438/ijcse/v6i10.235248.
Der volle Inhalt der QuelleS, Amarappa, und Sathyanarayana S.V. „Kannada Named Entity Recognition and Classification (NERC) Based on Multinomial Naïve Bayes (MNB) Classifier“. International Journal on Natural Language Computing 4, Nr. 4 (30.08.2015): 39–52. http://dx.doi.org/10.5121/ijnlc.2015.4404.
Der volle Inhalt der QuelleAli, Muhammad Asif, Yifang Sun, Bing Li und Wei Wang. „Fine-Grained Named Entity Typing over Distantly Supervised Data Based on Refined Representations“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 05 (03.04.2020): 7391–98. http://dx.doi.org/10.1609/aaai.v34i05.6234.
Der volle Inhalt der QuelleSpruit, Marco, und Bas Vlug. „Effective and Efficient Classification of Topically-Enriched Domain-Specific Text Snippets“. International Journal of Strategic Decision Sciences 6, Nr. 3 (Juli 2015): 1–17. http://dx.doi.org/10.4018/ijsds.2015070101.
Der volle Inhalt der QuelleVarghese, Akson Sam, Saleha Sarang, Vipul Yadav, Bharat Karotra und Niketa Gandhi. „Bidirectional LSTM joint model for intent classification and named entity recognition in natural language understanding“. International Journal of Hybrid Intelligent Systems 16, Nr. 1 (23.03.2020): 13–23. http://dx.doi.org/10.3233/his-190275.
Der volle Inhalt der QuelleWang, Peng, Jing Zhou, Yuzhang Liu und Xingchen Zhou. „TransET: Knowledge Graph Embedding with Entity Types“. Electronics 10, Nr. 12 (11.06.2021): 1407. http://dx.doi.org/10.3390/electronics10121407.
Der volle Inhalt der QuellePomares-Quimbaya, Alexandra, Rafael A. Gonzalez, Oscar Mauricio Muñoz Velandia, Angel Alberto Garcia Peña, Julián Camilo Daza Rodríguez, Alejandro Sierra Múnera und Cyril Labbé. „Concept Attribute Labeling and Context-Aware Named Entity Recognition in Electronic Health Records“. International Journal of Reliable and Quality E-Healthcare 7, Nr. 1 (Januar 2018): 1–15. http://dx.doi.org/10.4018/ijrqeh.2018010101.
Der volle Inhalt der QuellePutra, Fatra Nonggala, und Chastine Fatichah. „Klasifikasi jenis kejadian menggunakan kombinasi NeuroNER dan Recurrent Convolutional Neural Network pada data Twitter“. Register: Jurnal Ilmiah Teknologi Sistem Informasi 4, Nr. 2 (01.07.2018): 81. http://dx.doi.org/10.26594/register.v4i2.1242.
Der volle Inhalt der QuelleFan, Runyu, Lizhe Wang, Jining Yan, Weijing Song, Yingqian Zhu und Xiaodao Chen. „Deep Learning-Based Named Entity Recognition and Knowledge Graph Construction for Geological Hazards“. ISPRS International Journal of Geo-Information 9, Nr. 1 (27.12.2019): 15. http://dx.doi.org/10.3390/ijgi9010015.
Der volle Inhalt der QuelleHema, R., und T. V. Geetha. „Recognition of Chemical Entities using Pattern Matching and Functional Group Classification“. International Journal of Intelligent Information Technologies 12, Nr. 4 (Oktober 2016): 21–44. http://dx.doi.org/10.4018/ijiit.2016100102.
Der volle Inhalt der QuelleOliwa, Tomasz, Steven B. Maron, Leah M. Chase, Samantha Lomnicki, Daniel V. T. Catenacci, Brian Furner und Samuel L. Volchenboum. „Obtaining Knowledge in Pathology Reports Through a Natural Language Processing Approach With Classification, Named-Entity Recognition, and Relation-Extraction Heuristics“. JCO Clinical Cancer Informatics, Nr. 3 (Dezember 2019): 1–8. http://dx.doi.org/10.1200/cci.19.00008.
Der volle Inhalt der QuelleFilannino, Michele, und Özlem Uzuner. „Advancing the State of the Art in Clinical Natural Language Processing through Shared Tasks“. Yearbook of Medical Informatics 27, Nr. 01 (August 2018): 184–92. http://dx.doi.org/10.1055/s-0038-1667079.
Der volle Inhalt der QuelleChen, Xianglong, Chunping Ouyang, Yongbin Liu und Yi Bu. „Improving the Named Entity Recognition of Chinese Electronic Medical Records by Combining Domain Dictionary and Rules“. International Journal of Environmental Research and Public Health 17, Nr. 8 (14.04.2020): 2687. http://dx.doi.org/10.3390/ijerph17082687.
Der volle Inhalt der QuelleYang, Xi, Jiang Bian, Ruogu Fang, Ragnhildur I. Bjarnadottir, William R. Hogan und Yonghui Wu. „Identifying relations of medications with adverse drug events using recurrent convolutional neural networks and gradient boosting“. Journal of the American Medical Informatics Association 27, Nr. 1 (28.08.2019): 65–72. http://dx.doi.org/10.1093/jamia/ocz144.
Der volle Inhalt der QuelleBareket, Dan, und Reut Tsarfaty. „Neural Modeling for Named Entities and Morphology (NEMO2)“. Transactions of the Association for Computational Linguistics 9 (2021): 909–28. http://dx.doi.org/10.1162/tacl_a_00404.
Der volle Inhalt der QuelleCao, Lina, Jian Zhang, Xinquan Ge und Jindong Chen. „Occupational profiling driven by online job advertisements: Taking the data analysis and processing engineering technicians as an example“. PLOS ONE 16, Nr. 6 (22.06.2021): e0253308. http://dx.doi.org/10.1371/journal.pone.0253308.
Der volle Inhalt der QuelleAthenikos, Sofia J., und Il-Yeol Song. „CAM“. Journal of Database Management 24, Nr. 4 (Oktober 2013): 51–80. http://dx.doi.org/10.4018/jdm.2013100103.
Der volle Inhalt der QuelleAdel, Heike, und Hinrich Schuetze. „Type-aware Convolutional Neural Networks for Slot Filling“. Journal of Artificial Intelligence Research 66 (28.09.2019): 297–339. http://dx.doi.org/10.1613/jair.1.11725.
Der volle Inhalt der QuelleSakurai, Shigeaki. „Analysis of Textual Data Based on Inductive Learning Techniques“. International Journal of Information Retrieval Research 3, Nr. 2 (April 2013): 40–57. http://dx.doi.org/10.4018/ijirr.2013040103.
Der volle Inhalt der QuelleTanasijević, Ivana, und Gordana Pavlović-Lažetić. „HerCulB: content-based information extraction and retrieval for cultural heritage of the Balkans“. Electronic Library 38, Nr. 5/6 (30.10.2020): 905–18. http://dx.doi.org/10.1108/el-03-2020-0052.
Der volle Inhalt der QuelleGyan, Emmanuel, François Dreyfus und Pierre Fenaux. „REFRACTORY THROMBOCYTOPENIA AND NEUTROPENIA: A DIAGNOSTIC CHALLENGE“. Mediterranean Journal of Hematology and Infectious Diseases 7 (13.02.2015): e2015018. http://dx.doi.org/10.4084/mjhid.2015.018.
Der volle Inhalt der QuelleSharoff, Serge. „Finding next of kin: Cross-lingual embedding spaces for related languages“. Natural Language Engineering 26, Nr. 2 (04.09.2019): 163–82. http://dx.doi.org/10.1017/s1351324919000354.
Der volle Inhalt der QuellePermatasari, Dinda Ayu, und Devira Anggi Maharani. „Combination of Natural Language Understanding and Reinforcement Learning for Booking Bot“. Journal of Electrical, Electronic, Information, and Communication Technology 3, Nr. 1 (30.04.2021): 12. http://dx.doi.org/10.20961/jeeict.3.1.49818.
Der volle Inhalt der QuelleWu, Stephen, Kirk Roberts, Surabhi Datta, Jingcheng Du, Zongcheng Ji, Yuqi Si, Sarvesh Soni et al. „Deep learning in clinical natural language processing: a methodical review“. Journal of the American Medical Informatics Association 27, Nr. 3 (03.12.2019): 457–70. http://dx.doi.org/10.1093/jamia/ocz200.
Der volle Inhalt der QuelleWang, Xu, Shuai Zhao, Bo Cheng, Jiale Han, Yingting Li, Hao Yang und Guoshun Nan. „HGMAN: Multi-Hop and Multi-Answer Question Answering Based on Heterogeneous Knowledge Graph (Student Abstract)“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 10 (03.04.2020): 13953–54. http://dx.doi.org/10.1609/aaai.v34i10.7249.
Der volle Inhalt der Quelle