Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Na3V2(PO4)2F3.

Zeitschriftenartikel zum Thema „Na3V2(PO4)2F3“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Na3V2(PO4)2F3" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Zhang, Jiexin, Congrui Zhang, Yu Han, Xingyu Zhao, Wenjie Liu und Yi Ding. „A surface-modified Na3V2(PO4)2F3 cathode with high rate capability and cycling stability for sodium ion batteries“. RSC Advances 14, Nr. 20 (2024): 13703–10. http://dx.doi.org/10.1039/d4ra00427b.

Der volle Inhalt der Quelle
Annotation:
Na3V2(PO4)2F3 is an ideal cathode material for sodium-ion batteries with a high theoretical energy density. In this paper, the electronic conductivity of Na3V2(PO4)2F3 was improved by using a simple surface carbon coating method, and excellent electrochemical properties were obtained.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nowagiel, Maciej, Anton Hul, Edvardas Kazakevicius, Algimantas Kežionis, Jerzy E. Garbarczyk und Tomasz K. Pietrzak. „Optimization of Electrical Properties of Nanocrystallized Na3M2(PO4)2F3 NASICON-like Glasses (M = V, Ti, Fe)“. Coatings 13, Nr. 3 (21.02.2023): 482. http://dx.doi.org/10.3390/coatings13030482.

Der volle Inhalt der Quelle
Annotation:
Recently, an interest in NASICON-type materials revived, as they are considered potential cathode materials in sodium–ion batteries used in large-scale energy storage. We applied a facile technique of thermal nanocrystallization of glassy analogs of these compounds to enhance their electrical parameters. Six nanomaterials of the Na3M2(PO4)2F3 (M = V, Ti, Fe) system were studied. Samples with nominal compositions of Na3V2(PO4)2F3, Na3Ti2(PO4)2F3, Na3Fe2(PO4)2F3, Na3TiV(PO4)2F3, Na3FeV(PO4)2F3 and Na3FeTi(PO4)2F3 have been synthesized as glasses using the melt-quenching method. X-ray diffraction measurements were conducted for as-synthesized samples and after heating at elevated temperatures to investigate the structure. Extensive impedance measurements allowed us to optimize the nanocrystallization process to enhance the electrical conductivity of cathode nanomaterials. Such a procedure resulted in samples with the conductivity at room temperature ranging from 1×10−9 up to 8×10−5 S/cm. We carried out in situ impedance spectroscopy measurements (in an ultra-high-frequency range up to 10 GHz) and compared them with thermal events observed in differential thermal analysis studies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yu, Xiaobo, Tianyi Lu, Xiaokai Li, Jiawei Qi, Luchen Yuan, Zu Man und Haitao Zhuo. „Realizing outstanding electrochemical performance with Na3V2(PO4)2F3 modified with an ionic liquid for sodium-ion batteries“. RSC Advances 12, Nr. 22 (2022): 14007–17. http://dx.doi.org/10.1039/d2ra01292h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Li, Long, Jing Zhao, Hongyang Zhao, Yuanyuan Qin, Xiaolong Zhu, Hu Wu, Zhongxiao Song und Shujiang Ding. „Structure, composition and electrochemical performance analysis of fluorophosphates from different synthetic methods: is really Na3V2(PO4)2F3 synthesized?“ Journal of Materials Chemistry A 10, Nr. 16 (2022): 8877–86. http://dx.doi.org/10.1039/d2ta00565d.

Der volle Inhalt der Quelle
Annotation:
This work provides a reliable view for understanding the phase and composition of as-prepared Na3V2(PO4)2F3, showing that the proper introduction of oxygen substitution for fluorine is beneficial to the electrochemical performance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Guo, Rongting, Wei Li, Mingjun Lu, Yiju Lv, Huiting Ai, Dan Sun, Zheng Liu und Guo-Cheng Han. „Na3V2(PO4)2F3@bagasse carbon as cathode material for lithium/sodium hybrid ion battery“. Physical Chemistry Chemical Physics 24, Nr. 9 (2022): 5638–45. http://dx.doi.org/10.1039/d1cp05011g.

Der volle Inhalt der Quelle
Annotation:
The biomass bagasse carbon-coated Na3V2(PO4)2F3/C with nano-scale spherical morphology, prepared by spray drying and high temperature calcination, were proved to have excellent specific capacity and good cycling performance by electrochemical testing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lin, Zhi. „Phase Formation in NaH2PO4–VOSO4–NaF–H2O System and Rapid Synthesis of Na3V2O2x(PO4)2F3-2x“. Crystals 14, Nr. 1 (28.12.2023): 43. http://dx.doi.org/10.3390/cryst14010043.

Der volle Inhalt der Quelle
Annotation:
Renewable electricity products, for example, from wind and photovoltaic energy, need large-scale and economic energy storage systems to guarantee the requirements of our daily lives. Sodium-ion batteries are considered more economical than lithium-ion batteries in this area. Na3V2(PO4)2F3, NaVPO4F, and Na3(VO)2(PO4)2F are one type of material that may be used for Na-ion batteries. In order to better understand the synthesis of these materials, the phase formation in a NaH2PO4–VOSO4–NaF–H2O system under hydrothermal conditions was studied and is reported herein. This research focused on the influences of the sodium fluoride content and hydrothermal crystallization time on phase formation and phase purity. The phase transformation between Na(VO)2(PO4)2(H2O)4 and Na3V2O2x(PO4)2F3-2x was also studied. Na3V2O2x(PO4)2F3-2x with a high degree of crystallinity can be obtained in as short as 2 h via hydrothermal synthesis using a conventional oven at 170 °C without agitation. All compounds obtained in this research were studied mainly using powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, and Fourier-transform infrared spectroscopy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Olchowka, Jacob, Long H. B. Nguyen, Thibault Broux, Paula Sanz Camacho, Emmanuel Petit, François Fauth, Dany Carlier, Christian Masquelier und Laurence Croguennec. „Aluminum substitution for vanadium in the Na3V2(PO4)2F3 and Na3V2(PO4)2FO2 type materials“. Chemical Communications 55, Nr. 78 (2019): 11719–22. http://dx.doi.org/10.1039/c9cc05137f.

Der volle Inhalt der Quelle
Annotation:
Investigation of the effects of Al substitution for V on the structural properties and electrochemical performances for two of the most promising positive electrode materials for Na-ion batteries, Na3V2(PO4)2F3 and Na3V2(PO4)2FO2.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Broux, Thibault, Benoît Fleutot, Rénald David, Annelise Brüll, Philippe Veber, François Fauth, Matthieu Courty, Laurence Croguennec und Christian Masquelier. „Temperature Dependence of Structural and Transport Properties for Na3V2(PO4)2F3 and Na3V2(PO4)2F2.5O0.5“. Chemistry of Materials 30, Nr. 2 (05.01.2018): 358–65. http://dx.doi.org/10.1021/acs.chemmater.7b03529.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bianchini, M., N. Brisset, F. Fauth, F. Weill, E. Elkaim, E. Suard, C. Masquelier und L. Croguennec. „Na3V2(PO4)2F3 Revisited: A High-Resolution Diffraction Study“. Chemistry of Materials 26, Nr. 14 (30.06.2014): 4238–47. http://dx.doi.org/10.1021/cm501644g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yang, Ze, Guolong Li, Jingying Sun, Lixin Xie, Yan Jiang, Yunhui Huang und Shuo Chen. „High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries“. Energy Storage Materials 25 (März 2020): 724–30. http://dx.doi.org/10.1016/j.ensm.2019.09.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Bianchini, M., F. Lalère, H. B. L. Nguyen, F. Fauth, R. David, E. Suard, L. Croguennec und C. Masquelier. „Ag3V2(PO4)2F3, a new compound obtained by Ag+/Na+ ion exchange into the Na3V2(PO4)2F3 framework“. Journal of Materials Chemistry A 6, Nr. 22 (2018): 10340–47. http://dx.doi.org/10.1039/c8ta01095a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Bianchini, M., F. Fauth, N. Brisset, F. Weill, E. Suard, C. Masquelier und L. Croguennec. „Comprehensive Investigation of the Na3V2(PO4)2F3–NaV2(PO4)2F3 System by Operando High Resolution Synchrotron X-ray Diffraction“. Chemistry of Materials 27, Nr. 8 (07.04.2015): 3009–20. http://dx.doi.org/10.1021/acs.chemmater.5b00361.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Li, Wei, Xiaoyun Jing, Kai Jiang und Dihua Wang. „Observation of Structural Decomposition of Na3V2(PO4)3 and Na3V2(PO4)2F3 as Cathodes for Aqueous Zn-Ion Batteries“. ACS Applied Energy Materials 4, Nr. 3 (11.02.2021): 2797–807. http://dx.doi.org/10.1021/acsaem.1c00067.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

GOVER, R., A. BRYAN, P. BURNS und J. BARKER. „The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3“. Solid State Ionics 177, Nr. 17-18 (Juli 2006): 1495–500. http://dx.doi.org/10.1016/j.ssi.2006.07.028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Xun, Jiahong, Yu Zhang und Huayun Xu. „One step synthesis of vesicular Na3V2(PO4)2F3 and network of Na3V2(PO4)2F3@graphene nanosheets with improved electrochemical performance as cathode material for sodium ion battery“. Inorganic Chemistry Communications 115 (Mai 2020): 107884. http://dx.doi.org/10.1016/j.inoche.2020.107884.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

James Abraham, Jeffin, Buzaina Moossa, Hanan Abdurehman Tariq, Ramazan Kahraman, Siham Al-Qaradawi und R. A. Shakoor. „Electrochemical Performance of Na3V2(PO4)2F3 Electrode Material in a Symmetric Cell“. International Journal of Molecular Sciences 22, Nr. 21 (07.11.2021): 12045. http://dx.doi.org/10.3390/ijms222112045.

Der volle Inhalt der Quelle
Annotation:
A NASICON-based Na3V2(PO4)2F3 (NVPF) cathode material is reported herein as a potential symmetric cell electrode material. The symmetric cell was active from 0 to 3.5 V and showed a capacity of 85 mAh/g at 0.1 C. With cycling, the NVPF symmetric cell showed a very long and stable cycle life, having a capacity retention of 61% after 1000 cycles at 1 C. The diffusion coefficient calculated from cyclic voltammetry (CV) and the galvanostatic intermittent titration technique (GITT) was found to be ~10−9–10−11, suggesting a smooth diffusion of Na+ in the NVPF symmetric cell. The electrochemical impedance spectroscopy (EIS) carried out during cycling showed increases in bulk resistance, solid electrolyte interphase (SEI) resistance, and charge transfer resistance with the number of cycles, explaining the origin of capacity fade in the NVPF symmetric cell. Finally, the postmortem analysis of the symmetric cell after 1000 cycles at a 1 C rate indicated that the intercalation/de-intercalation of sodium into/from the host structure occurred without any major structural destabilization in both the cathode and anode. However, there was slight distortion in the cathode structure observed, which resulted in capacity loss of the symmetric cell. The promising electrochemical performance of NVPF in the symmetric cell makes it attractive for developing long-life and cost-effective batteries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Kosova, Nina, Daria Rezepova und Nicolas Montroussier. „Effect of La3+ Modification on the Electrochemical Performance of Na3V2(PO4)2F3“. Batteries 4, Nr. 3 (09.07.2018): 32. http://dx.doi.org/10.3390/batteries4030032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Song, Weixin, Xiaobo Ji, Jun Chen, Zhengping Wu, Yirong Zhu, Kefen Ye, Hongshuai Hou, Mingjun Jing und Craig E. Banks. „Mechanistic investigation of ion migration in Na3V2(PO4)2F3 hybrid-ion batteries“. Physical Chemistry Chemical Physics 17, Nr. 1 (2015): 159–65. http://dx.doi.org/10.1039/c4cp04649h.

Der volle Inhalt der Quelle
Annotation:
The ion-migration mechanism of Na3V2(PO4)2F3 is investigated in Na3V2(PO4)2F3–Li hybrid-ion batteries through a combined computational and experimental study.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Pianta, Nicolò, Davide Locatelli und Riccardo Ruffo. „Cycling properties of Na3V2(PO4)2F3 as positive material for sodium-ion batteries“. Ionics 27, Nr. 5 (02.04.2021): 1853–60. http://dx.doi.org/10.1007/s11581-021-04015-y.

Der volle Inhalt der Quelle
Annotation:
AbstractThe research into sodium-ion battery requires the development of high voltage cathodic materials to compensate for the potential of the negative electrode materials which is usually higher than the lithium counterparts. In this framework, the polyanionic compound Na3V2(PO4)2F3 was prepared by an easy-to-scale-up carbothermal method and characterized to evaluate its electrochemical performances in half cell vs. metallic sodium. The material shows a specific capacity (115 mAh g−1) close to the theoretical limit, good coulombic efficiency (>99%) and an excellent stability over several hundred cycles at high rate. High-loading free-standing electrodes were also tested, which showed interesting performances in terms of areal capacity and cyclability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Samarin, Aleksandr Sh, Alexey V. Ivanov und Stanislav S. Fedotov. „Toward Efficient Recycling of Vanadium Phosphate-Based Sodium-Ion Batteries: A Review“. Clean Technologies 5, Nr. 3 (06.07.2023): 881–900. http://dx.doi.org/10.3390/cleantechnol5030044.

Der volle Inhalt der Quelle
Annotation:
Sodium-ion batteries (SIBs) have demonstrated noticeable development since the 2010s, being complementary to the lithium-ion technology in predominantly large-scale application niches. The projected SIB market growth will inevitably lead to the generation of tons of spent cells, posing a notorious issue for proper battery lifecycle management, which requires both the establishment of a regulatory framework and development of technologies for recovery of valuable elements from battery waste. While lithium-ion batteries are mainly based on layered oxides and lithium iron phosphate chemistries, the variety of sodium-ion batteries is much more diverse, extended by a number of other polyanionic families (crystal types), such as NASICON (Na3V2(PO4)3), Na3V2(PO4)2F3−yOy, (0 ≤ y ≤ 2), KTiOPO4-type AVPO4X (A—alkali metal cation, X = O, F) and β-NaVP2O7, with all of them relying on vanadium and phosphorous—critical elements in a myriad of industrial processes and technologies. Overall, the greater chemical complexity of these vanadium-containing phosphate materials highlights the need for designing specific recycling approaches based on distinctive features of vanadium and phosphorus solution chemistry, fine-tuned for the particular electrodes used. In this paper, an overview of recycling methods is presented with a focus on emerging chemistries for SIBs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Semykina, Daria O., Maria A. Kirsanova, Yury M. Volfkovich, Valentin E. Sosenkin und Nina V. Kosova. „Porosity, microstructure and electrochemistry of Na3V2(PO4)2F3/C prepared by mechanical activation“. Journal of Solid State Chemistry 297 (Mai 2021): 122041. http://dx.doi.org/10.1016/j.jssc.2021.122041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Li, Wei, Kangli Wang, Shijie Cheng und Kai Jiang. „A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode“. Energy Storage Materials 15 (November 2018): 14–21. http://dx.doi.org/10.1016/j.ensm.2018.03.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Wang, Jie, Qiming Liu, Shiyue Cao, Huijuan Zhu und Yilin Wang. „Boosting sodium-ion battery performance with binary metal-doped Na3V2(PO4)2F3 cathodes“. Journal of Colloid and Interface Science 665 (Juli 2024): 1043–53. http://dx.doi.org/10.1016/j.jcis.2024.04.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Hu, Fangdong, und Xiaolei Jiang. „Superior performance of carbon modified Na3V2(PO4)2F3 cathode material for sodium-ion batteries“. Inorganic Chemistry Communications 129 (Juli 2021): 108653. http://dx.doi.org/10.1016/j.inoche.2021.108653.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Vali, R., P. Moller und A. Janes. „Synthesis and Characterization of Na3V2(PO4)2F3 Based Cathode Material for Sodium Ion Batteries“. ECS Transactions 69, Nr. 39 (28.12.2015): 27–36. http://dx.doi.org/10.1149/06939.0027ecst.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Zhu, Lin, Hong Wang, Dan Sun, Yougen Tang und Haiyan Wang. „A comprehensive review on the fabrication, modification and applications of Na3V2(PO4)2F3 cathodes“. Journal of Materials Chemistry A 8, Nr. 41 (2020): 21387–407. http://dx.doi.org/10.1039/d0ta07872g.

Der volle Inhalt der Quelle
Annotation:
This review provides a specialized summary of Na3V2(PO4)2F3 cathodes for the first time, including an in-depth discussion of fabrication methods, modification strategies and applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Park, Min Je, und Arumugam Manthiram. „Unveiling the Charge Storage Mechanism in Nonaqueous and Aqueous Zn/Na3V2(PO4)2F3 Batteries“. ACS Applied Energy Materials 3, Nr. 5 (14.04.2020): 5015–23. http://dx.doi.org/10.1021/acsaem.0c00505.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Peng, Manhua, Xiayan Wang und Guangsheng Guo. „Synthesis of nano-Na3V2(PO4)2F3 cathodes with excess Na+ intercalation for enhanced capacity“. Applied Materials Today 19 (Juni 2020): 100554. http://dx.doi.org/10.1016/j.apmt.2020.100554.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Su, Renyuan, Weikai Zhu, Kang Liang, Peng Wei, Jianbin Li, Wenjun Liu und Yurong Ren. „Mnx+ Substitution to Improve Na3V2(PO4)2F3-Based Electrodes for Sodium-Ion Battery Cathode“. Molecules 28, Nr. 3 (01.02.2023): 1409. http://dx.doi.org/10.3390/molecules28031409.

Der volle Inhalt der Quelle
Annotation:
Na3V2(PO4)2F3 (NVPF) is an extremely promising sodium storage cathode material for sodium-ion batteries because of its stable structure, wide electrochemical window, and excellent electrochemical properties. Nevertheless, the low ionic and electronic conductivity resulting from the insulated PO43− structure limits its further development. In this work, the different valence states of Mnx+ ions (x = 2, 3, 4) doped NVPF were synthesized by the hydrothermal method. A series of tests and characterizations reveals that the doping of Mn ions (Mn2+, Mn3+, Mn4+) changes the crystal structure and also affects the residual carbon content, which further influences the electrochemical properties of NVPF-based materials. The sodiation/desodiation mechanism was also investigated. Among them, the as-prepared NVPF doped with Mn2+ delivers a high reversible discharge capacity (116.2 mAh g−1 at 0.2 C), and the capacity retention of 67.7% after 400 cycles at 1 C was obtained. Such excellent performance and facile modified methods will provide new design ideas for the development of secondary batteries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Geng, Jiguo, Feng Li, Shengqian Ma, Jing Xiao und Manling Sui. „First Principle Study of Na3V2(PO4)2F3 for Na Batteries Application and Experimental Investigation“. International Journal of Electrochemical Science 11, Nr. 5 (Mai 2016): 3815–23. http://dx.doi.org/10.1016/s1452-3981(23)17439-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Nguyen, Long H. B., Thibault Broux, Paula Sanz Camacho, Dominique Denux, Lydie Bourgeois, Stéphanie Belin, Antonella Iadecola et al. „Stability in water and electrochemical properties of the Na3V2(PO4)2F3 – Na3(VO)2(PO4)2F solid solution“. Energy Storage Materials 20 (Juli 2019): 324–34. http://dx.doi.org/10.1016/j.ensm.2019.04.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Cheng, Jun, Yanjun Chen, Shiqi Sun, Zeyi Tian, Yaoyao Linghu, Zhen Tian, Chao Wang, Zhenfeng He und Li Guo. „Na3V2(PO4)3/C·Na3V2(PO4)2F3/C@rGO blended cathode material with elevated energy density for sodium ion batteries“. Ceramics International 47, Nr. 13 (Juli 2021): 18065–74. http://dx.doi.org/10.1016/j.ceramint.2021.03.122.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Li, Feng, Yifei Zhao, Lishuang Xia, Zhendong Yang, Jinping Wei und Zhen Zhou. „Well-dispersed Na3V2(PO4)2F3@rGO with improved kinetics for high-power sodium-ion batteries“. Journal of Materials Chemistry A 8, Nr. 25 (2020): 12391–97. http://dx.doi.org/10.1039/d0ta00130a.

Der volle Inhalt der Quelle
Annotation:
Well-dispersed Na3V2(PO4)2F3@rGO is proposed to improve the kinetics of Na3V2(PO4)2F3 cathode materials for high-power sodium-ion batteries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Shakoor, R. A., Dong-Hwa Seo, Hyungsub Kim, Young-Uk Park, Jongsoon Kim, Sung-Wook Kim, Hyeokjo Gwon, Seongsu Lee und Kisuk Kang. „A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries“. Journal of Materials Chemistry 22, Nr. 38 (2012): 20535. http://dx.doi.org/10.1039/c2jm33862a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Criado, A., P. Lavela, G. Ortiz, J. L. Tirado, C. Pérez-Vicente, N. Bahrou und Z. Edfouf. „Highly dispersed oleic-induced nanometric C@Na3V2(PO4)2F3 composites for efficient Na-ion batteries“. Electrochimica Acta 332 (Februar 2020): 135502. http://dx.doi.org/10.1016/j.electacta.2019.135502.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Liu, Zigeng, Yan-Yan Hu, Matthew T. Dunstan, Hua Huo, Xiaogang Hao, Huan Zou, Guiming Zhong, Yong Yang und Clare P. Grey. „Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na3V2(PO4)2F3“. Chemistry of Materials 26, Nr. 8 (11.04.2014): 2513–21. http://dx.doi.org/10.1021/cm403728w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Zhu, Lin, Qi Zhang, Dan Sun, Qi Wang, Nana Weng, Yougen Tang und Haiyan Wang. „Engineering the crystal orientation of Na3V2(PO4)2F3@rGO microcuboids for advanced sodium-ion batteries“. Materials Chemistry Frontiers 4, Nr. 10 (2020): 2932–42. http://dx.doi.org/10.1039/d0qm00364f.

Der volle Inhalt der Quelle
Annotation:
Na3V2(PO4)2F3@rGO can expose different crystal facets and exhibit excellent electrochemical performance via guiding the crystal growth orientation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Hu, Yu, Peiyu Chen, Fanfan Liu, Xiaolong Cheng, Yu Shao, Peng Lu, Hui Zhang, Shikuo Li, Fangzhi Huang und Yu Jiang. „Dual-anion ether electrolyte enables stable high-voltage Na3V2(PO4)2F3 cathode under wide temperatures“. Journal of Power Sources 602 (Mai 2024): 234405. http://dx.doi.org/10.1016/j.jpowsour.2024.234405.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Puspitasari, Diah Agustina, Jagabandhu Patra, I.-Ming Hung, Dominic Bresser, Tai-Chou Lee und Jeng-Kuei Chang. „Optimizing the Mg Doping Concentration of Na3V2–xMgx(PO4)2F3/C for Enhanced Sodiation/Desodiation Properties“. ACS Sustainable Chemistry & Engineering 9, Nr. 20 (11.05.2021): 6962–71. http://dx.doi.org/10.1021/acssuschemeng.1c00418.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Zhu, Pengfei, Wenjie Peng, Huajun Guo, Xinhai Li, Zhixing Wang, Ding Wang, Jianguo Duan, Jiexi Wang und Guochun Yan. „Toward high-performance sodium storage cathode: Construction and purification of carbon-coated Na3V2(PO4)2F3 materials“. Journal of Power Sources 546 (Oktober 2022): 231986. http://dx.doi.org/10.1016/j.jpowsour.2022.231986.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Kosova, Nina V., Daria O. Rezepova, Sergey A. Petrov und Arseny B. Slobodyuk. „Electrochemical and Chemical Na+/Li+Ion Exchange in Na-Based Cathode Materials: Na1.56Fe1.22P2O7and Na3V2(PO4)2F3“. Journal of The Electrochemical Society 164, Nr. 1 (07.12.2016): A6192—A6200. http://dx.doi.org/10.1149/2.0301701jes.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Yi, Hongming, Le Lin, Moxiang Ling, Zhiqiang Lv, Rui Li, Qiang Fu, Huamin Zhang, Qiong Zheng und Xianfeng Li. „Scalable and Economic Synthesis of High-Performance Na3V2(PO4)2F3 by a Solvothermal–Ball-Milling Method“. ACS Energy Letters 4, Nr. 7 (11.06.2019): 1565–71. http://dx.doi.org/10.1021/acsenergylett.9b00748.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Liu, Shuang, Liubin Wang, Jian Liu, Meng Zhou, Qingshun Nian, Yazhi Feng, Zhanliang Tao und Lianyi Shao. „Na3V2(PO4)2F3–SWCNT: a high voltage cathode for non-aqueous and aqueous sodium-ion batteries“. Journal of Materials Chemistry A 7, Nr. 1 (2019): 248–56. http://dx.doi.org/10.1039/c8ta09194c.

Der volle Inhalt der Quelle
Annotation:
Due to the merits of low cost, safety, environmental friendliness, and abundant sodium reserves, non-aqueous and aqueous sodium-ion batteries are wonderful alternatives for large-scale energy storage.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Guo, Biao, Wenyu Diao, Tingting Yuan, Yuan Liu, Qi Yuan, Guannan Li und Jingang Yang. „Enhanced electrochemical performance of Na3V2(PO4)2F3 for Na-ion batteries with nanostructure and carbon coating“. Journal of Materials Science: Materials in Electronics 29, Nr. 19 (23.07.2018): 16325–29. http://dx.doi.org/10.1007/s10854-018-9722-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Zhang, Yusheng, Youzuo Hu, Tingting Feng, Ziqiang Xu und Mengqiang Wu. „Mg-doped Na3V2-xMgx(PO4)2F3@C sodium ion cathodes with enhanced stability and rate capability“. Journal of Power Sources 602 (Mai 2024): 234337. http://dx.doi.org/10.1016/j.jpowsour.2024.234337.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Hwang, Jinkwang, Ikuma Aoyagi, Masaya Takiyama, Kazuhiko Matsumoto und Rika Hagiwara. „Inhibition of Aluminum Corrosion with the Addition of the Tris(pentafluoroethyl)trifluorophosphate Anion to a Sulfonylamide-Based Ionic Liquid for Sodium-Ion Batteries“. Journal of The Electrochemical Society 169, Nr. 8 (01.08.2022): 080522. http://dx.doi.org/10.1149/1945-7111/ac8a1f.

Der volle Inhalt der Quelle
Annotation:
Ionic liquids (ILs) based on sulfonylamide-type anions have gained widespread utility as electrolytes for secondary batteries. Although sulfonylamide-based IL electrolytes are known to form a stable passivation layer that prevents Al corrosion, the Al electrode in the Na[FSA]-[C2C1im][FSA] ([FSA] = bis(fluorosulfonyl)amide and [C2C1im] = 1-ethyl-3-methylimidazolium) IL, is found to be afflicted by pitting corrosion at potentials above 4 V vs Na+/Na during electrochemical measurement at 90 °C. Therefore, this study investigates the suppressive effect of [FAP]− (FAP = tris(pentafluoroethyl)trifluorophosphate) on the Al corrosion behavior of the IL electrolyte. Here, the inhibited corrosion of the Al electrode is confirmed through a series of cyclic voltammetry measurements, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Charge-discharge tests performed using a Na3V2(PO4)2F3 positive electrode demonstrates that the addition of [FAP]– into the IL enhances cycling performance at the intermediate temperature of 90 °C.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Zhu, Weikai, Kang Liang und Yurong Ren. „Modification of the morphology of Na3V2(PO4)2F3 as cathode material for sodium-ion batteries by polyvinylpyrrolidone“. Ceramics International 47, Nr. 12 (Juni 2021): 17192–201. http://dx.doi.org/10.1016/j.ceramint.2021.03.030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Nongkynrih, Jeffry, Abhinanda Sengupta, Brindaban Modak, Sagar Mitra, A. K. Tyagi und Dimple P. Dutta. „Enhanced electrochemical properties of W-doped Na3V2(PO4)2F3@C as cathode material in sodium ion batteries“. Electrochimica Acta 415 (Mai 2022): 140256. http://dx.doi.org/10.1016/j.electacta.2022.140256.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Wang, Mingxue, Xiaobing Huang, Haiyan Wang, Tao Zhou, Huasheng Xie und Yurong Ren. „Synthesis and electrochemical performances of Na3V2(PO4)2F3/C composites as cathode materials for sodium ion batteries“. RSC Advances 9, Nr. 53 (2019): 30628–36. http://dx.doi.org/10.1039/c9ra05089b.

Der volle Inhalt der Quelle
Annotation:
Na3V2(PO4)2F3/C composites were synthesized by a solid-state reaction method using pitch as the carbon source, the as-prepared sample with the carbon content of 12.14% possesses an excellent rate performance and cycle stability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Yan, Guochun, Romain Dugas und Jean-Marie Tarascon. „The Na3V2(PO4)2F3/Carbon Na-Ion Battery: Its Performance Understanding as Deduced from Differential Voltage Analysis“. Journal of The Electrochemical Society 165, Nr. 2 (2018): A220—A227. http://dx.doi.org/10.1149/2.0831802jes.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie